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CALCULATIONS OF THE FLOW OVER AN INCLINED FIAT PIATE
AT FREE-STREAM MACH NUMBER 1

By Waelter G. Vincenti, Cleo B. Wagoner, and
Newman H. Fisher, Jr.

SUMMARY

A numerical solution has been obtained of the complete equations of
inviscid compressible flow for the case of an inclined flat plate at free-
stream Mach number 1. The mixed flow ebout the lower surface of the plate
is found by relaxation solution of & boundary-value problem in the hodo-
graph plane. Considerable preliminary analysis is required by the pres-
ence of the free-stream singularity, which must be incorporated analyti-
cally into the numerical work. The methods devised for this part of the
work may have application in other problems of transonic flow. The super-
sonic flow on the upper side of the plate is found in the physical plane
by a standard form of the method of characteristics. The calculations
here are carried only as far as the end of the separated region that
appears on the upper surface near the leading edge. The results, which
are for an angle of attack of 13°, show the pressure distribution on the
lower surfece and the detailed flow field about the lower surface and the
leading edge.

The results for the flow field show that the large changes of velocity
that occur near the leading edge are confined to a surprisingly small part
of the field. The stagnation point on the underside of the plate, for
example, is found to be only 0.0016 of the chord aft of the leading edge.
(This is in contrast to a value of 0.05 for incompressible flow gbout a
prlate at the same angle of attack.) The average radius of curvature of
the sonic line as it approaches the leading edge is even smaller. To see
the details here, in fact, it is necessary to plot the resulis to a scale
in vhich the displacement of the stagnation point aft of the leading edge
is approximately 50 inches.

The calculations of the pressure distribution indicate that Guderley's
earlier solution on the basis of the transonic smsll-disturbance theory
glves reasonably accurate results even at the present moderately large
angle of attack. If the small-disturbance values are corrected by a method
due also to Guderley, the error is almost completely eliminated except at
the leading edge where the corrected solution still cannot represent the
true flow.
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INTRODUCTLON

The problem of the two-dimensionsl flow over an inclined flat plate
at free-stream Mach number 1 has been discussed by Guderley in reference 1.
This problem is of interest as an example of the unsymmetric transonic
flow that occurs around a sharp-nosed airfoil when the angle of attack is
large compared with the nose angle. (On a plate, where the nose angle is
zero, any angle of attack meets this description.) A solution of the
problem was given by Guderley on the basis of the small-disturbance theory
for transonic flow. This solution, arrived at by an ingenious analytical
procedure, gives useful information on the pressure distribution on both
surfaces of the plate. Owing to the approximations involved in the theory,
however, the results are limited to angles of attack which, though large
in comparison with the nose angle, are in themselves still small. More
important, the details of the flow at the leading edge, which are of
fundemental interest, do not appear in the analysis.

The work to be described in the present paper was conceived as part
of a study of the transonic flow around leading edges. To supply the
details missing in the small-disturbance analysis, it is proposed here
to solve the flat-plate problem using the complete equations of inviscid
compressible flow. The exclusion of viscosity may, it is realized, lead
to some error at the sharp leading edge. If past experience is any guide,
however, an inviscid solution will be of value toward understanding the
actual viscous flow. It will also provide, for one specific case, a
check of the accuracy of a known small-disturbance solution.

Since the analytical problem for the complete equations is a formidable
one, the solution in the present work is carried out largely by numerical
means,1 As in Guderley's enalysis, the mixed flow over the lower surface
of the plate is found by solution of a boundary-value problem in the hodo-
graph plane, The only real difficulty here is with the free-stream singu-
larity, which must be incorporated analytically into the numerical work.
The numerical procedures themselves are an extension of the work already
reported in references 3 and 4, The supersonic flow on the upper side of
the plate is found in the physical plane by the method of characteristics.
In the present report this part of the calculation is carried only as far
as the end of the closed region of separation that appears on the upper
surface adjacent to the leading edge. It is hoped eventually to complete
the solution to the trailing edge, but owing to circumstances outside the
work this will not be possible in the immediate future.

The calculated results, vwhich are for an angle of attack of l3°, show
the pressure distribution on the lower surface and the flow field about the

1The analytical solution of the two-dimensional airfoil problem
for the complete equations has been treated by Frankl in reference 2,
which came to the authors' attention after the present work was under way.
Frankl gives a general solution in the form of an infinite series of
Chaplygin solutions. The application of this general solution to a spe-
cific boundary-value problem, however, is not discussed.
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lower surface and the leading edge. In view of the known properties of
flows near the sonic flight speed (see refs. 5 and 6), the results should
be applicable for a range of free-stresm Mach number either side of 1. This
is especially true of the flow in the immediate viecinity of the leading
edge. Because of the nature of the flow field, the findings for the lower
surface of the plate can be applied, within minor limitations, to the flow
on the underside of any sharp-nosed airfoil with a flat lower surface.

As in reference 3, the report is divided into two parts. Part I con-
tains an outline of the general problem and its solution and a discussion
of the final results. Part IT supplies the mathematical details. A sum-
mary of the notation is given in an appendix at the end of the report.

The relaxation calculations for the lower surface of the plate were
performed with unusual skill end diligence by Mrs. Marjorie Sill. The
characteristics construection on the upper surface was programmed for the
electronic computer by Meyer M. Resnikoff, who contributed many valusble
ideas to this phase of the work.

I - GENERAL PROBILEM AND FINAT. RESULTS

GENERAL PROBIEM
Description of Flow Field

The inviscid flow over an o
inclined plate at free-stream ? //Limiﬁng
Mach number 1 has been described ] Mach wave
by Guderley in reference 1. A
qualitative picture of the flow
is given in sketch (a), vwhich
is essentially a reproduction
of figure 1 of Guderley's
report.

As shown in the sketech,
there exists at angle of attack
a8 large region of subsonic flow
in front of and beneath the
plate. This region is bounded
by the lower surface DB of the
plete, by sonie lines DO and BO
springing from the leading and M<1
trailing edges, and by the free \
stream O gt infinity. In this ____
region, as in incompressible
flow, the fluid forwerd of the
plate is deflected upward. As
a result, a stagnation point \
C occurs on the lower surface Sketch (a) Y

Separated
region

Sonic line
————— Expansion

|
Compresslon}M“h wave
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of the plate near the leading edge. At this point the central (or "steg-
nation") streamline branches to run both fore and aft along the plate.
Sonic speed is reached on the surface of the plate precisely at the lead-
ing and trailing edges D and B, The sonic line from each of these edges
leaves the plate at right angles to the lower surface., Downstream of each
sonic line there occurs a supersonic expansion fan centered at the edge.

Expansion fans of the type encountered here have been described in
detail in references 3 and 7. In the 1limit of the edge itself, the fan
epproaches the classical Prandtl-Meyer flow. Away from the edge, however,
the elementary expansion waves (or Mach waves), which are straight in the
Prandtl-Meyer case, now bend upstream toward the sonic line. Some of
these expansion waves, in fact, meet the sonic line, where they are
reflected as compressions; others pass entirely downstream of the line.
The wave that separates the two classes of expansion waves, the so-called
"1imiting wave" (see EO and AO in sketch (a)), approaches the sonic line
at infinity. Obviously - and this is the essential point - the flow in
the subsonic region must depend in part on conditions in the supersonic
fen shead of the limiting wave. It is, however, completely independent
of conditions downstream of this wave.

The details of the flow over the upper surface of the plate are not
completely certain. Even in the absence of viscosity, a separated region
must be expected adjacent to the leading edge. This follows from the
fact that the angle of turn called for at the edge - 180° in the present
case - is greater than the 130° attainable by expansion to a vacuum. In
any real fluid, of course, the pressure actuaelly attained in the separated
region will be fixed by viscous phenomena. From the standpoint of the
present purely inviscid theory, however, this pressure is to be regarded
as an assigneble parsmeter (subject to one restriction to be mentioned
later). Once the flow has separated from the plate, the central stream-
line follows a peth of constant pressure. To do this in the presence of
the compression waves reflected from the sonic line, it must curve back
again toward the plate. At some point the streamline will presumably
reattach to the plate and be deflected to the direction of the upper sur-
face by an oblique shock wave. Downstream of this reattachment wave, the
flow will proceed at decreasing supersonic speed to the trailing edge,
where a second shock wave will occur. The foregoing is, at least, a
plausible description of the flow as it might be expected to exist on the
upper surface. It is not inconceivable, however, that the shock system
could be more complicated than that described here.

The foregoing discussion implies one restriction that has not yet
been stated. This is that the pressure assigned in the separated region
must be not greater than that vwhich exists where the limiting wave meets
the leading edge. TFor pressures greater than this value, the limiting
wave would have to start, not at the leading edgg, but at some point on
the separated streamline, In this situation the part of the streamline
between the leading edge and the foot of the limiting wave would be inter-
dependent with the subsonic field. The problem would then be slightly
different from that considered here, though the methods devised in this
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report could again be used to obtain a solution. Since the flow on the
underside of the plate would be little affected in any event, this second
possibility will be ignored, and the earlier situation will be presumed
to exist.

As should be apparent from this discussion, the analytical problem
Pfalls into two parts. To calculate the flow on the lower surface of the
plate, a transonic boundsry-value problem must be solved in a region con-
sisting of the subsonic field and those portions of the two supersonic
fans shead of their limiting waves. Once conditions on the upper limiting
wave are known, the calculation of the field above the plate is an initial-
value problem in purely supersonic flow. In the first problem, the flow
is everywhere irrotational. In the second problem, it is irrotational as
far as the reattachment wave and rotational after that.

Method of Analysis

The method of analysis is described in detail in part II of the
report. The mixed flow about the underside of the plate is found by
numerical (i.e., finite-difference) solution of a boundary-value problem
in the hodograph plane. In this formulation of the problem, the free
stream appears as a singularity - that is, an infinity - at a point on
the sonic circle. This singularity consists of two superposed parts, one
antisymmetric and similaxr to a doublet, the other symmetric and similar
to & vortex. To calculate the flow, two separate boundary-value problems
are solved, each containing one of the elementary singularities. The
final result is then obtained by combining the two solutions to meet the
condition that the central streamline branches at the stagnation point.

As in all finite-difference work, the singularities must be incor-
porated into the solutions analytically. This is complicated in the pres-
ent case by the fact that simple closed expressions for the singularities
are not available for the complete differential equation. A suiteble
method can be devised, however, based on the use of known results for the
Tricomi equation. The method takes full account of the primary effect of
the singularity. A small approximation is involved, however, in that
singularities in certain of the higher-order derivatives (i.e., second
order and sbove) are ignored in the numerical calculations. Experience
indicates that the error from this source is probably smaller then that
involved in the finite-difference process itself. It is sure to be
negligible in the viecinity of the plate.

The finjte-difference solution of the boundary-velue problems entails
several elements of novelty. These are made necessaxry by the presence of
the singularity and by the mixed nature of the flow field. In the sub-
sonic region the finite-difference equations are esteblished in what is
essentielly a polar coordinate system. Except for the inclusion of the
singularity, the procedures here are more or less standard. In the super-
sonic region the equations are set up in characteristic coordinates. The
procedures here and at the transition from one coordinsate system to the
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other at the sonic line are somewhat unusual. Solution of the system of
finite-difference equations is carried out on desk calculators by a com-
bination of relaxation techniques and step-by-step procedures. Once the
solution is obtained in the hodograph plane, transformation to the physical

plane is a simple matter.

The purely supersonic flow over the upper surface of the plate is
found in the physical plane by a standard form of the method of character-
istics. In the present work a completely numerical process was used, in
contrast to the more usual semigraphical procedures. This was done for
two reasons: (1) The high Mach numbers and correspondingly small Mach
angles in the vicinity of the separated region made any semigraphical
procedure of doubtful accuracy; and (2) the large number of points required
in the characteristics net made the use of automatic computing machines
mandatory. The numerical work was carried out on an electronic digital
computer. As mentioned in the introduction, the calculations for this
part of the problem have been carried only as far as the reattachment
point on the upper surface. For the time being they have also been con-
fined to only one value of the separation pressure. It is hoped that the
work can be carried on to the trailing edge and repeated for other values
of the separation pressure at a later date.

RESULTS AND DISCUSSION

Calculations have been made, on the basis of the methods outlined,
for an angle of attack of 13°. The work was carried out for a ratio of
specific heats 7y of 1.405 instead of the more usual value of 7/5. This
was done because it was originally intended that the characteristics con-
struction would be made by a semigraphicael version of Guderley's method,
for which extensive tables on the basis of the former value are available
(ref. 8). When this method was ebandoned in favor of automatic numerical
computation (which does not utilize the tables), the calculations for the
lower surface with 7 = 1.405 were too far along to alter. The final
results in the physical plane are shown in figures 1 and 2 and are dis-
cussed in the Pollowing paragraphs. (For results in the hodograph plene,
see part IT of the report.)

Flow Field

Lower surface and leading edge.- The flow field about the lower sur-
face and leading edge is shown in figures 1(a) through 1(d). To understand
these figures, it will perhaps be best to follow them through consecutively
in some detail.

The first figure (1(a)) shows the complete plate from the leading
edge to the trailing edge. In this and the subsequent parts of figure 1,
size is indicated by & scale of s/c , where s 1is any length in the field
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and c¢ is the chord of the plate. Streamlines are identified by a value
of [8(y/c)],, which denotes the vertical distance at infinity between the
streamline in question and the central (or stagnation) streamline. Con-
tours of constant fluid properties are identified by the value of the local
Mach number M.

The most striking thing about figure 1(a) is the extraordinarily
small size of the region into which the large changes of flow around the
leading edge are concentrated. This is typified by the distance from the
stagnation point to the leading edge, along which the flow must accelerate
from M =0 toM=1. Even at the fairly large angle of attack of 13°,
this distance is only 0.00l6 of the chord, which is too small to appear
in the present figure. In incompressible flow about a lifting flat plate
at the same angle of attack, the corresponding result as given by con-
formal transformstion (see, e.g., ref. 9) is 0.05 of the chord. Obviously,
the stagnation point must move forward merkedly as the free-stream Mach
number increases in the subsonic range. When Mach number 1 is reached,
it is, to the scale of the plate as a whole, practically coincident with
the edge. The representation of the leading-edge flow by a singularity
in vhich the stesgnation point lies precisely at the edge is a well-known
approximation in thin-airfoil theory. The present results suggest that
the approximation should be even closer to the truth at transonic speeds
(as, for example, in the work of Guderley (ref. 1)) than it is in the
classical incompressible case,

As with the displacement of the stagnation point, the details of the
sonic line and limiting wave are not visible in figure 1(a). As nearly
as can be seen from this figure, the soniec line meets the leading edge
more or less directly from ebove, while the limiting wave comes into the
edge slightly from the rear. This appearance is, of course, at variance
with the qualitative description given earlier in connection with
sketch (a). If the results of figure 1(a) were all that were available,
however, one might be inclined to accept the statements of the present
parsgraph as correct. .

That the true state of affairs is quite different begins to appear
in figure 1(b). This figure shows the flow over the forward portion of
the plate to a scale 20 times that of figure 1(a). The present figure
also includes the separated streamline, which will be discussed later.

Enlargement to the scale of figure 1(b) is sufficient to show the
displacement of the stagnation point. A pronounced curvature of the sonic
line is also visible here, and this line seems now to meet the leading edge
from directly forward of the plate. The latter situation is, however,
still different from that described in connection with sketch (a). The
limiting wave in figure 1(b) appears to meet the edge from the rear, but
with greater slope and more curvature then were visible before.
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To examine the situation at the leading edge in still greater detail,
the results are replotted once more in figure l(c), this time to a scale
200 times that of figure 1(a). Here at last it appears that the sonic
line does indeed approach the leading edge from the underside of the plate.
The manner in which the approach takes place, however, is still not clear.

To see the latter details, one is forced ultimately to a plot such
as figure 1(d). This plot has a magnification 5000 times that of the
original figure 1(a). Because of this very large magnification, the stag-
nation point in the present plot would lie approximately 50 inches off the
page to the right. The trailing edge (whose position nevertheless deter-
mines the characteristic length in the problem) would be slightly more
than 1/2 mile away. Despite the very large scale of figure 1(d), the
results thaet appear here can be specified with good accuracy. This is
because the hodograph transformation has the property of greatly enlarging
the region near the leading edge relative to the rest of the field. Thus,
a perfectly reasonable mesh interval for the finite-difference scheme in
the hodograph plane (see part II) can provide sufficient data to define
the lines of figure 1(d) without difficulty. To obtain comparable accuracy
in calculations in the physical plane an impractically small interval would
be required in the vicinity of the leading edge.

The contrast between the leading-edge flow as it appears in fig-
ure 1(d) and as it appeared originslly in figure 1l(a) is obvious. In
figure 1(d) it can be seen that the sonic line does in fact meet the lead-
ing edge at right angles to the lower surface of the plate. (Tt can be
shown that the curvature of the sonic line where it meets the plate is
infinite.) The limiting wave in figure 1(d) comes into the edge from a
direction slightly forward of the vertical. It thus approaches the plate
much as the sonic line seemed to in the small plot of figure 1(a). To
the present scale it is also possible to see something of the way in which
the influence of the leading edge is propageted in the supersonic region.
This is shown by the Mach lines included in the figure. The reader may
find it interesting to compare these results with a similar plot of the
Mech lines and streamlines in the classical Prandtl-Meyer flow (see,
especially, p. 278 of ref. 10 and p. 171 of ref. 11).

Separated streamline.- The separated streamline is shown in fig-
ures 1(b) through 1(d) for the single case that has been calculated. In
this case the pressure pg on the separated streamline is given by
ps/ptm = 0.000738, where ptno is the total pressure in the free strean.

This is precisely the value of the pressure ratio that exists where the
limiting wave meets the leading edge - that is, we have assumed that the
flow remains attached to the leading edge until the limiting wave is
reached and then immediately separates (see "Description of Flow Field").
The corresponding Mach number Mg on the separated streamline is 5.88,
end the angle at which the streamline leaves the plate 1s 83—1/2o relative
to0 the free-stream direction.
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As can be seen from figure 1(b), the over-all dimensions of the
separated region are of the same order of magnitude as the distance from
the leading edge to the stagnation point. The length of limiting wave that
18 needed to calculate the separated streamline is merked off in fig-
ure 1(b) by the point P. This is the point from which the downgoing
Mach wave to the reattachment point leaves the limiting wave. The angle
through which the flow must be deflected et the reattachment point turns
out to be 19°. This is well below the maximum deflection that can be
attained through an oblique shock wave in an inviscid flow at the assumed
Mach number of 5.88. Except for these observations, little can be said
about the separsted flow until results become available for other values
of the pressure in the separated region.

Pressure Distribution

The distribution of pressure coefficient Cp on the lower surface
of the plate is shown in figure 2. Results for the complete surface are
given in figure 2(a) and for the region between the leading edge and stag-
netion point in figure 2(b). Included for comparison in figure 2(a) are
three additional sets of results obtained as follows:

(a) Directly from Guderley's small-disturbance anaslysis for Mo = 1
(ref. 1),

(b) From Guderley's small-disturbance analysis with the approximate
relationship between his hodograph variable 1 and the dimen-
sionless speed Ww replaced by an exact relationship (see
eq. (10a) of part II; this procedure was suggested and used by
Guderley for a different problem in ref. 12),

(¢) From the classical methods of conformel transformation for
incompressible flow (see, e.g., ref. 9).

It can be seen from figure 2(a) that Guderley's work of reference 1
somevhat overestimates the pressure over the entire chord. The average
velue of Cp given by his analysis is 0.59; that of the present work is
0.525. According to Guderley's cealculations, the center of pressure is
at 35 percent of the chord; the present work puts it at 37.9. Considering
the fairly large angle of attack, however, the quantitative accuracy of
the small-disturbance analysis is remarkably good. The only major error
in the small-disturbance analysis occurs near the leading edge where the
approximaete theory represents the stegnation point by an infinity at the
edge. The present results, by contrast, rise to the stagnation Cp of
1.275 very close to the edge and then drop to zero at the edge itself
(see f£ig. 2(b)). The effect of this qualitative difference on the inte-
grated force on the surface is obviously small.

According to figure 2(a), application of a correction to the small-
disturbance results as outlined in (b) above eliminates most of the
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numerical error relative to the present findings. The discrepancies that
do remain are, for the most part, within the limits of accuracy to vhich
one can read numerical results from the graphs of reference l. As regards
the leading-edge flow, the corrected curve gives a true stagnation value
of 1.275 but places the stagnation point still on the edge. For almost
all purposes, therefore, there appeers to be no need to go beyond the
corrected small-disturbance analysis. Only if the details of the flow in
the immediate vicinity of the leading edge are of importance is it neces-
sary to resort to more accurate work. :

The results for incompressible flow have been ineluded in figure 2(a)
for general interest. They illustrate the relatively great displacement
of the stagnation point (Cp = 1.0) that occurs in the incompressible case.

CONCLUDING REMARKS

To what extent the results found here will apply to an actual airfoil
in a real fluid is an open question. The only experimentel date bearing
on the problem are those of Wood (ref. 13), who made interferometric
studies of the flow at high subsonic speeds over a thin wedge at an angle
of attack of the lower surface of 11.5°. Wood's results for the lines of
constant Mach number (see, in particular, his figure 3(e) for M, = 0.894)
show a distinct resemblance to the flow field of figure 1(a). Wood remarks
on the basis of his results that the stagnation point is "very close to
the leading edge," though precisely how close his measurements do not show.
At moderate distances above the leading edge, the sonic line found by Wood
looks reasonsbly like that of figure 1(a) if regard is had for differences
in free-stream Mach number. As to conditions in the immediate vicinity
of the edge, Wood takes his resulis to "indicate strongly that the sonic
line starts from the upper surface,” though "refraction of the light in
the large density gradient . . . precludes following the contours all the
way to the surface." Because of the latter circumstance, the interfer-
ometer, in effect, views the field from essentially the scale of fig-
ure 1(a) (or, at best, something a slight bit larger). In view of the
minute size of the leading-edge flow as calculated in the present work,
Wood'!s inference must therefore be taken as tentative. As factors that
might move the sonic line from the lower surface, Wood cites the viscosity
of the fluid and the nonzero thickness of the real leading edge. Viscos-
ity will undoubtedly be of same influence, though the large negative
gradient of pressure near the leading edge would tend to minimize this
effect. (The pressure in the separated region will, of course, be fixed
by viscous phenomena, but these need not influence conditions on the lower
surface.) The thickness of the leading edge is likely to be of more
importence, since any real edge, though "sharp" in the ordinary sense,
will have an enormous thickness when viewed to the scale of figure 1(d).
It may well prove, however, that any chenges from the theoretical patternm,
even from this latter source, are of only local effect and that the rela-
tively distant field will be correctly given by the theory. Certainly
there are meny questions to be answered, and the remarks of this paresgraph
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are to be considered merely as miscellaneous thoughts on the subject. A
challenging field exists here for experimental research.

II - DETAILS OF ANALYSIS

An outline of the method of analysis has been given in part I of the
report. The material that follows is concerned with the mathematical
details. 1In the initial section the analytical basis is given for the
calculation of the mixed flow over the lower surface in the hodograph
Plane. The main interest here is in the treatment of the free-stream
singularity. The second section is concerned with the numerical solution
of the hodograph problem. The procedures developed here, particulerly as
regards the finite-difference equations in the supersonic region and near
the sonic line, may have application in other problems of mixed flow.

The third and final section deals briefly with the cheracteristics con-
struction used to find the purely supersonic flow over the separated region
on the upper surface.

ANAT.YTTCAL BASTS FOR CALCULATION OF FLOW OVER LOWER SURFACE

Boundary-Value Problem in Hodograph Plane

. A representation of the flow over the lower surface of the plate in
the physical plane has been given in part I (see sketch (a)). The corre-
sponding picture in the hodograph plane is shown in sketch (b). The
variables here are the dimension-
less speed w (i.e., the ordinary E
speed V made dimensionless
through division by the critical
speed a,) and the flow inclination
0 (measured relative to the free-
stream direction). Corresponding
points in sketches (a) and (b) are
noted by the same symbols.

In the hodograph plane the
sonic speed eppears as the circle
w = 1. The free stream appears
on this cirecle as the point O
located at 6 = 0. All of the
streamlines issue from this
point, which is therefore sin- \\\ /8
gular. The lower surface of
the plate is represented by a -
straight line passing through S~
the stagnation point C and
inclined at sn sngle of attack Sketeh (b)




12 NACA TN 3723

o +to the free-stream direction. This line meets the sonic circle at
points D and B, which correspond to the upstream side of the leading and
trailing edges, respec‘bively The leading edge itself appears as the
clockwise characteristic (i.e., epicycloid) through D; the trailing edge
as the counterclockwise characteristic through B. The limiting Mach
waves appear in the hodograph as the. two characteristics passing through
the free-stream point O. The point (E or A) at which each of these char-
acteristics intersects the image of the corresponding edge fixes the
extent of the edge that is of importance in determining the flow over the
lower surfece. The stagnation streamlipe runs in the hodograph from the
Pree-stream point O to the stagnation point C, where it branches. The
streamlines that lie above the stegnation streamline in the hodograph
plane pass above the plate in the physical plane. Those that lie below
this streamline pass below the plate.

To calculate the flow over the lower surface of the plate, a boundary-
value problem must be solved in the region OABCDEO. If the stream func-
tion ¥(w,9) is taken as the dependent varieble, the differential equation
to be satisfied is the usual linear equation (see, e.g., ref. 14, p. 147)

7y -3
1-f—= w2
7 +1 1-w2
szw+w Yw'l' Yee = 0 (l)
1-L- L 1-2-12
7y +1 +1

where differentiation is indicated by the subscript notation., This equa-
tion is elliptic for w < 1 and hyperbolic for w > 1. The characteristics
that exist for w > 1 are given by

i/2
L1 -1
de = %= — > aw (2a)
7 + lW2
or
1/2
0 = 6ymy * l en™? - tan™}
7+l w2
7+l 7+1

vhere 6y=3 18 the value of 0 at which the characteristic meets the
soniec circle.
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The boundary conditions to be satisfied in the problem are as fol-
lows: .

1. The value of ¥ is constant - say O - on the boundary ABCDE.

2. The function ¥ has the proper singular behavior at the free-
stream point O.

3. The streamline V¥ = O branches at the stagnation point C.

In order to represent the free stream, the singularity at O must have
the following properties (cf. ref. 15):

(a) The function ¥ +takes on all values from +w t0 -» at the
point O,

(b) No singularities propagate along the limiting characteristics
EO and AO. (This follows from the fact that no singularities
exist in the boundery conditions at E and A.)

(e) The limiting characteristics transform into the finite part of
the physical plane,

(4) The flow maps onto a single sheet in the physical plane.

Simple end useful expressions satisfying these requirements for the small-
disturbance equivalent of equation (1) (i.e., the Tricomi equation) have
been given by Guderley (refs. 1, 15, and 16) and Frankl (ref. 2). These
expressions are the sum of two parts: (1) a doublet-like singularity
antisymmetric in 6 and (2) a vortex-like singularity symmetric in 6.
Correspondingly simple expressions for the exact equation (1) have not
been given, though Frankl (ref. 2) has obtained an infinite series of
Cheplygin solutions that satisfies the given requirements. The present
work will utilize the known singularities for the Tricomi equation (which
predominate in any event) plus certain correction terms sufficient to
account for a significant part of the difference between the approximate
and exact results (see following section).

In view of boundary condition 1, boundary condition 3 can be met by
requiring that .

¥,(0,08) =0 (3)

for any (and hence all) @ between -o and % - a. To satisfy this condi-
tion in the present work we shall write ¥ in the form

¥ =92 4 CY8 (%)
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where Y and ¥ are functions containing, respectively, the antisymmetric
and symmetric parts of the free-stream singularity and C is a constant,
The functions ¥Y* and ¥ will be required to satisfy individuslly the
boundary condition 1 but not the boundary condition 3. The combined func-
tion ¥ will then constitute a solution of the complete problem - that is,
will satisfy all the boundary conditions including 3 - provided C is
evaluated such that

W‘a(oje)

" %2(0,0) G)

The task now is to solve the individual boundary-value problems for
v and ¥®, In the end this will be done by numerical (i.e., finite-
difference) meens., First, however, certain analytical preliminaries are
required, particulerly with reference to the free-stream singularity.

Transformation of Differentisl Equation

To utilize the known singularities for the Tricomi equation, it is
necessary to put equation (1) into a form closer to that of Tricomi.
This can be done by a transformation of the type used by Guderley in the
case of the equation for the Legendre potential (refs. 12 and 16):

7 = n(w)
L (6)
Vot

Expressions for the functions 1 and g appearing here are found by sub-
stituting equations (6) into equation (1) and requiring that the resulting
partial differential equation for V¥ agree in its derivatives with the
Tricomi equation - specifically, that it have the form

v, = rl‘lfee + b('ﬂ)‘l’ =0 (7)

m

This procedure leads to the following ordinaery differential equations for

n and g:
n(n")® < > (8)
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7-3
n - w2
! ..]: __n l _—-——_.7+l =
R P ) g=0 (9)
1l - ——
7+1

vhere the primes denote differentiation of a function with respect to its
argument., By integration of equation (8), 1 is found as

i/e2
n(w) —-— 71 ta.nh-l rl_1-w - tanh™*
7+l 1 - -1 w2
7+1 7+1

(10=)
for w< 1 and
n(w) = — <+> -16 > —tan<
l-mw? l—-mwz
(10b)

for w2> 1. Here 1 has been taken equal to zero at w = 1 to satisfy
the requirement that equation (7) change type at this point. (The simi-
larity between equations (10b) and (2b) should be noted.) From equa-
tion (9), & is found as

Y+2 7+1
e(7-1) +(7-1)

o) @) e w

where the constant of integration has been chosen (arbitrarily) to make
=lat w=1l, Plots of 7 and g as functions of w for 7y = 1.405

are shown in figures 3 and 4, and tabular values are given in table I.

The function 17 1s positive at supersonic speeds (w > 1) and negative
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at subsonic speeds (w < 1). Tt goes to negative infinity as w—> 0 and

bas & finite value (v, ) at the meximum speed Wpax =N(y + 1)/(y - 1).

The function g goes to positive infinity as w—> 0 and to zero at
Wmax.

The function b(n) in equation (7) is given implicitly by.the equation

b(n) = — _ ””2 (12)
n (n*)? 5 7+1

vhere g'/g and g"/g are to be evaluated with the aid of equations (9)
and (8). A greph of b as a function of 7 is given in figure 5;
tabulsr values are included in table I. The value of b is always nega-
tive; it approaches negative infinity as 1> np,.. and zero as 1 —> -,

For the subsequent work it is also necessary to knmow b as a power series
in n about 7 = 0. The required expansion is

b(n) =bo + b3 + b2 + . . . (13)
where
bo = "0.9181
bl = "1.316)4'
by = -1.07H1
8

When transformed

C = f=7-a D into the 1,0 plane,
the hodograph bounderies
appear as shown in
sketch (¢). The char-

E acteristics of the dif-

' ferential equation (T7),

7~ vhich define the bound-

7
Ve aries for 1 > O, are
o - given by (see eqs. (2b)
~ —n  and (10b))
- __h
C—= B

Sketch (c)
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T

These are the same, of course, as for the Tricomi equation.

To carry out the solution for mn > O we shall also require equa-
tion (7) in characteristic coordinates. These coordinates will be denoted
here by r and 1 (corresponding to the right- and left-hand characteristics

relative to the direction of positive 1q).
equations

They are defined by the

9 =1 - % n3/2 (15a)
- 2 3/
o=1+3m 2 (151p)
or equivalently
2/3
n = [13; (r- z)] (162)
_r+1
0 ==~ (16b)

When transformed into these coordinates, equation (7) becomes

1

[6(r- 1) 133~ + ==es (Y - W) [+ DY =0 (27)
17 6(r-1)

4

Free-Stream Singularity

Method of treatment.- The finite-difference solution of problems
involving & strong singularity (i.e., an infinity or discontinuity in the
unknown or en infinity in its first derivatives) has been discussed by
various writers (see, e.g., ref. 17). The usual procedure in linear prob-
lems is to write the dependent varisble as the sum of two parts, each of
vhich is individually & solution of the differential equation. The first
part is & term of known analytical form containing the required singular-
ity. The second part, free of singularity, is to be determined in accord-
ance with the remaining, nonsingular boundary conditions., This part, being

regular, can be found by numerical means.

This procedure, unfortunately,
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cannot be followed in the present case, since suitaeble analytical expres-
sions for the singularity for the complete equation (7) are not known.
Instead the procedure here will be to utilize the known singularities for
the Tricomi equation plus certain analytical correction terms, These
terms will reduce the order of the singularity in the remaining unknown
to the point where it may safely be ignored in the numerical process.

The sonic singularities for the Tricomi equation - that is, for the
equation

T(F) = ¥y, - Mg = O (18)

have been discussed at length by Guderley in reference 16, Following
Guderley's notation, we shall express these solutions in the form

¥ = In|"er(tsn) (19)

vhere { is a new variable defined by

2
t =2 (20)
hn
The function f1 is a solution of a hypergeometric equation whose coef-
ficients involve n as a parameter. Expressions for f7 are listed in
reference 16 in terms of hypergeometric functions. As shown in refer-
ence 16, the values of n required to represent a uniform free stream
are —5/2 for the antisymmetric singularity and -1 for the symmetric

singularity.
To utilize the solutions (19) in the present case, we begin by
revwriting equation (7) as

T(¥) = - (bo + ban + b2 + . . )Y (21)

For reasons that will appear directly, the solution of the boundary-value
problem (for either & or ¥®) is then taken in the form

m
$=A(§+ Z ;l\ri>+x (22)
i=o
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vhere A 1is any convenient constant. The $i that appear here are

singular correction functions® of the form @i = I-qlnigi(t_;) and X is

added to satisfy the nonsingular boundary conditions. TIn contrast to the
usual procedure outlined above, none of the terms in equation (22) are
individually solutions of the differential equation (21). To meke clear
the reasonsAfor the foregoing choice - and at the same time derive equa-
tions for ¥ and X - we substitute equation (22) into equation (21) and
arrange the result according to the following scheme:

% [7(%) +bX] (
+ (V) bo¥
+ T(¥,) + ban¥
+ T(¥,) ? = - J +o21?¥ 4 bo¥,
+ T(§s) +Dban®¥  + banf, + bo¥,
PR e e e e
+ T@m)J + by + by 20, + By a3, + . . .+ Dobipop
+ by ™ + by 2 + m.gnm‘zsl o000+ bl'l‘?m-z + b&m_l
+ oot ™R+ B, o+ BTN 4 . . .+ banRly o + Danfy, + Dot
oo e e e e e et e et e
.

The idea here is that we determine ¥, ¥,, etc., such that T(§,) = -bo¥,
~ n -

T(§,) = -ban¥, etc. Since, in general, T(¥;) = |n] 1 ah.j_(g) if

"V\i = In Inigi(g), and since we have ¥ = |y Ian, it follows that the correc-

tion functions must proceed like $o = |q |n+2go s {1}1 = l'qln"'sgl, ete. The

scheme of equation (21) follows accordingly. (Note in particular that for
i > 2 the previous correction functions must be included together with
on the right-hand side of the equation.) It thus appears that the expres-
sion (22) will constitute a solution of the differential equation (21),
provided the general correction V4 and the function X satisfy the fol-
lowing nonhomogeneous differential equations:

2Correction functions of this type have also been used by Frankl in
reference 2.
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T(¥;) = - (ognl¥ + DiaWi2g + Dygni™S + . . .+ Doby-p)
(24)
for 1i=0,1, . . . , mand
T(X) + DX = - A[(bp B+ + by nm2 &+ . ., . )¥
+ (bm-20™"* + du™ + ... N
+ (bp-2W®2 + bp-a™ 4. .. )Y,
4+ o o ¢ o 6 o6 6 ¢ & o o o o 0 o o o
+ (bo + b1y + .. )‘T’m-:.
+ (bo + b + oo o Vil (25)

It is apparent that the correction functions ﬁi, like the original func-
tion V¢, are singular at the origin. The singularity, however, becomes '
weaker (i.e., makes its first appearance in progressively higher-order
derivatives) as i 1increases. The function X is also singular at the
origin, the singularity here being one order weeker than that in .

Equations (24t) and (25) form the basis for the present work. As
will be seen, equation (24) can be solved analytically for as large a
value of 1 as will be required. Solution for erbitrary i would be
very difficult. (This is the reason for not taking m = o and thus
reducing X to a regular function.) Equation (25) will be solved numeri-
cally, subject to appropriate boundary conditions, by ignoring the singu-
larity in % at the origin and applying the finite-difference techniques
ordinarily used for a regular function. If the singularity is sufficiently
weak, the resulting error in the over-all solution should be small. To
make a numerical solution possible at all, a minimum requirement is that
the right-hand side of equation (25) must be finite and single-valued at
the origin. Since V = |11 lan, it can be seen that for this requirement
to be satisfied we must choose m such that m+1+n > 0 or that
m> -(n + 1). For the entisymmetric singularity (n = -5/2) we shall
therefore take m = 2, For the symmetric singulerity (n = -1), m will
be taken equal to 1. In the antisymmetric case the singularity that then
remains in X first appears in the derivative Xgg (but not in x"l or
X'lle)‘ In the symmetric case it first appears in the third-order deriva-

tives. Ignoring singularities of this order in the solution for X may
be expected to cause negligible error, especially in the vicinity of the
plate.

Solution for correction functions.~ According to the foregoing,
* expressions for the correction functions {l?i are needed for i=0, 1, 2.
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These are found by solving equation (24) s which can also be written
i-2

‘/lf\i = 1]$i = - 'bi'fli;j; + Z bi_g_tni'a't’\l}t (26)
M 6o £
=0

To carry out the solution we introduce a function V¥ that satisfies
the Tricomi equation

W.,m - 11?99 =0 (27)

and has the property that

Wee =¥ (28)

(Expressions for ¥ will be given later.)® From equations (27) and (28)
we also have the relations

Yy = Mgg = ¥ (292)
and

The solution of equation (26) will now be sssumed in the form

n

¥y =2y F + 'Yy (30)

where py and qq are constants whose values are to be found. By differ-
entiating this expression and making use of relations (29), one obtains

SThis approach was suggested by Gottfried Guderley, to whom the
authors are much indebted.
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¥y, = Pal(3-2)(2-2)0175F + 2(1- a5y + 011 +

g3 [1(1- 1)ni=, + (20 +1)niF + n+3) (31a)
V1gg = il Vg + yynl¥y (31b)

Substitution of expressions (31) end (30) into equation (26) then gives,
in view of equation (27),

q (2 + 1)1V + py(1- 1) (1 - 20137 + (2ps + igy)(1-1)nl=Y,

j-2 i-2
= -binify - 915¥ Z by o 4Py - 1 EY, by oty
t=0 t

=0

For this equation to be satisfied for all 7 we must have

g;(21 +1) = -by

i-2

- Z by o Py

t=0

(32)

pi(1 - 1) - 2)

e

i-2

- Z byoo-t% )

t=0

(2p; + iq4)(1 - 1)

These are three equations for the two unknowns p; and g;, so that in
general a solution cennot be found, For i =0, 1, 2, however, certain
of the equations either coincide or disappear, and a solution can be
obtained as follows:
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For i = O equations (32) reduce to

9 = -bo
-2p, = 0
_2Po =0

which have the solution py = 0, g5 = -bo.

For 1 = 1 equations (32) become

3q, = -ba1
Py . 0=20
(2p, +q;) . 0=0

We thus bave p, arbitrary - say O - and q, = -by/3.*

For i = 2 equations (32) become
54 = -bz
P2 . o = "bopo

-bod,

2p, + 24,
Since p, = O and q, = -b,, these have the solution g, = -bz/5 and
= (bo?/2) + (v2/5).

By using these results in equation (30), we thus obtain the required
correction functions as

N b —
vl == .31: M 1 $ (33)

Dy
2=\2 *5/) W5 T

4Tt is to be expected that p, would be arbitrery, since for i =1
the first term of expression (27) reduces to p,¥, and this term will, by
virtue of equation (24), disappear when substltuted into the left-hand
side of equation (23), irrespective of the value of p,.
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If it were required, a solution for @s Acould be found by taking a sult-
able value of p, # O. A solution for VY, (and higher) in the form of
equation (27) is epparently impossible.

To apply equations (33) it remmsins to write expressions for ¥
and V. With the aid of the equgtions of reference 16 (pp. 58 and 34-35)
it ca.nn'be shown that, if ¥ = In|"£1(t;n) as given by equation (19), then
an expression for ¥ +that satisfies equations (27) and (28) is

Kln In+af1(§;n + 3) (3k)

<l
i

where

(bn + 1) (30 -+ 7)
(n+2)(n+3)(2n + 1)(2n + 3)

By differentiating equation (34) and having recourse again to the equations
of reference 16, it can also be shown that

_ 1/
¥y = K| | (s1gn n)[(n+3)f1(§;n+3) - 2—(%%'@ 61" (etem e)f1<§;n+%>]

(35)

where (sign 1) or (sign @) are quantities with sbsolute value 1 and the
sign of 1 or 0.

Finsal relations.- By using equations (19), (33), (3%), and (35) in
conjunction with equations (22) and (25), we can now write the final
relations to be used in solving the boundary-value problems for & and &,

Problem for ¥&: In this case the solution must contein the enti-
symmetric singulerity, in which case n = -5/2 and m = 2. Equation (22),
written for xy& , thus becomes, after substitution from equations (33) )

~ 2 - _a
W=Aa[¢a+<b—g- +-b5—2>wa-<bo +33*n+35-2- n2>¢n]+xa (36)
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The differential equation for the unknown X2 is found by substituting
equations (33) into equation (25) and can be written

o -
a a L) 2)15° Po” P2 ol
Xm - MXgg + DX =-A {[b (bo+Dban+ban2) 1V + b(bz + 5 v

b b -
[b@o + ?1 N+ -55 'q2> - boz]qr:} (37)

The formulas to be used in computing ﬁra, i'fa, and ﬁ,‘? , &s obtained from
equations (19), (34), and (35), are

w
¥ = e - 2)
7%= - 2 |n|ll2f1<§; %;) 5 (38)
72 = 2 (o (oten et ) - 2 101 (otem 012185 1) |
J

These quantities are all antisymmetric with respect to 6, so that
computations need be carried through only for positive 4.

Problem for V®: Here the solution contains the symmetric singular-
ity, in which case n = -1 and m = 1. The equation for V8 is therefore

~ b -
¥e = As[ws - <bo + ?1 11> ¥y ] + X° (39)

and the differential equation for X® is

Xfm - 'q‘xge + bX® = -AS{[b - (bo+ban)1¥° - b (bo + _1;_1 Tl> ‘T’-,s]} (ko)
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The formulas for ¥  and \'lr': are

¥ = [n| ter(t; -1)
_ (41)

¥y = '1[9f1(§;2) - 6|§|1/2(813n e)f1<§; :—’D]

These quantities are both symmetric with respect to 6.

Formulas for the f£y(f;n) that appear in equations (38) end (1) are
given by Guderley in reference 16 in terms of hypergeometric series. For
the values of n required here, however, the results can be put in closed
form analogous to that given by Frankl for n = -5/2 in reference 2. If
a new varigble s is introduced according to the definition

"T \/;__e___ina ) «/C_E: (42)
9
the pertinent formulas are
oo -G e alGe - -G ot]
1 1 L
f2(ts 1) =_2- | - 1|§[(l -8)® 4+ (14 8)5]
T > )

®

- 1
L jez-af [@- o - @+ 9]

[s2- ll-a:@ + s)(l - s)% + (—31- - s)(l + s)%] )

Hy
*E'r\
.

n

1

I

v

H
-
P
Ve
A" 1)
o
-

[}
]
i
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Equations for Transformation to Physical Plane

After the boundary-velue problems for V& and V8 are solved, ¥ is
found from equations (6) and (%), and the solution is transformed to the
physical plane. If x and y form a right-hand coordinate system with
x in the free-stream direction, the transformation equations can be put
in the form (ef. ref. 14, pp. 146-147)

ax = xXylw + Xxgdo

(bk)
dy=ywd.w+yede
where
1
Py 1 ¥
Xy = - sin 0 ¥, + cos 8 —
e L L= _7’-1
7+1
oo [
x9=5?r—a* -wcos 6 ¥%; - sin eYe] >
(15)
Pt [ 1-w2 ¥
yw=p—w—a-'—* -cOB eww-l-y_l Sine—‘;']
7+1
Py
ye-_-pm;[w sin 6 ¥; + cos GYG] )
and
.
Py < r-1 > 7-1
L a(1-L o 16
P ry+1 (16)

In the present work all distances will be made dimensionless in terms
of the airfoil chord, which can be written

Xg - %p
CcOo8 a

¢c =
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vhere xp and xg are the x coordinates of the leading and trailing
edges (measured.relative to any convenient origin). By applying equa-
tions (44) through (46) elong the line DCB, for which d8 = O (see
sketch (b)), one can write :

B
xB-xD=£ xwdw=cc;id'1 (48)
where
B
1- w2 Y9
Ie- f — =2 a(sw) (49)

It is understood from the limits that the integration is taken from D
to B along the image of the plate. The minus sign in the differential
d(tw) is to be used from D to C and the plus sign from C to B. Combi-
nation of equations (47) and (48) then gives

_1
c=g- I (50)

from which we can write

\
d<’—é) = % (ayx@v + a,xgdsd)

) (51)
d(%) = -i-I['- (a4y,Aw + a*yed.e)

Equations (51), (49), and (45) are the basis for the numerical transfor-
mation from the hodograph plane to the physical plane,

To transform the characteristic lines in the supersonic region, it
is convenient to rewrite the transformation equations in the coordinates
r and 1. This can be done on the basis of equations (15) and (8). The
results are
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d(> % ax.dr + ay 7'6.7.)

yy_1
d<3> =3 (ayy,dr + ayy,dl)

3

$ (52)

J
vhere
\
Xp =—p-§-t—-a* (B cos 6 - sin 0)¥,
Py,
Xy =~ .OK (B cos 6 + sin 0)¥,
5 (53)
Y ='p;;%-* (B sin 6 + cos 6)¥,
Py
¥, = _'pﬁ- (B sin 6 - cos 6)‘1’1
J
and

dc=vl

NUMERICAL SOLUTTON FOR FLOW OVER LOWER SURFACE

General Scheme

The numerical solution of the boundary-value problems for V2 and |8

will be based on equations (36), (37) and (39), (40). To explain the
general scheme, it is convenient to introduce the linear differential
operator La(F) defined equivalently by
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F-m-l - T]Fee + bF (5""3)

Ly(F) =
[6(x - 1)12’3[ Fry —6—(1%_-1-)- (Fr'Fz):l+bF (5l

In this notation the differentisl equations (7) and (17) become
Iy(¥) = 0 (55)

It is also convenient for present purposes to write the solutions (36)
end (39) in the form

¥ = AM + X (56)

vhere M 1s a shorthand notation for the quantity sppearing in brackets
in the earlier representations. By substituting this expression into
equation (55), we can then write the differential equations (37) and (%0)
in the form

I (X) = -ALy (M) (57)

vhere Iy(M) is identical to the quantity in braces on the right-hand
side of the earlier equations.

To carry out a solution for the unknown X, we begin in the usual
fashion by replacing the differentisl expression on the left-hand side
of equation (57) by a corresponding difference expression. This is done
as usual by covering the region of solution with a suitable mesh and
approximating the differential operator I; (F) by an approprliate difference
operator at each mesh point. This c'b.fference operetor, denoted by LA(F) »
will appear in the form

LA(F) = LA(Fo: Fi, o 0 o, Fn)

vhere the Fj(j=0, 1, . . . , n) denote the values of F at the point
in question and. at n adjacent points. In this manner the differential
equation (57) is replaced at each mesh point by a difference equation of

the type
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LX) = -ATy(M) (58)

So far the procedure is conventional. At this point one could pro-
ceed, also in conventional fashion, to solve the difference equation (58)
for X. The required values of % on the boundary would follow directly
from equation (56) and the known condition that ¥ = O on the boundary.
Following the determination of X at all mesh points, the corresponding
values of ¥ would then be calculated, agsin by means of equation (56).

Considerable simplification over the foregoing method can be obtained,
however, by using a method due to Woods (ref. 17). According to this
method, instead of solving for X, one uses equation (56) immediately to
replace X3 for all mesh points in equation (58) by the equivalent
Vs - AMJ. (The special case of equations involving the origin, at which
M“j‘j = 0, will be treated later.) In this manner one obtains a system of
difference equations of the form )

La(¥) = -A[Ty(M) - LA(M)] (59)

This system can be solved directly for V., This method, though completely
equivalent mathematically to that outlined in the preceding paragraph, has
a great advantage for the present work., This stems from the fact that the
right-hand side .of equation (59), which is proportional to the difference
between Ly and L, both operating on M, tends to zero as the distance
from the origin increases. At some distance (depending upon the value of
A, the size of the mesh interval, and the accuracy desired in the work)
the right-hand side will, in fact, become negligible., Beyond this dis-
tance equation (59) reduces for all practical purposes to

LA(¥) =0 (60)

(which is the same as would have been obtained if the finite-difference
approximation had been introduced into equation (55)). This means that
the values of IJ(M) and M need be calculated at only & small percentage
of the mesh points, instead of at all points as would be the case if the
method based on equation (58) were used. Furthermore, the advantages to
the computer of working with the familiar veriable vV, with boundary con-
ditions direetly in this verisble, are considersble.

The foregoing procedure must be modified when one of the Xj in
the difference equation (58) - say Xy - is located at the origin. This
situation will prevail in the difference equations at the origin itself
and at points adjacent thereto. In these equations Xyi cannot be replaced
by VY3 - AM; since M, 1is infinite. It must therefore remain in the
equation, although the other X j cen be replaced as before. Even in such
cases, however, the general procedure can be formally retained if we look
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upon Xy as a fictitious value of ¥ - say V) -~ and teke My as arbi-
trarily zero. If this convention is used in the expressions to be given
below for LA(F), equation (59) will automatically provide the correct
difference equations at the origin and adjacent points. The value of 1V
that is computed, however, will have no real significance.

Details of Finite-Difference Equations

To apply equation (59), it is necessary to obtain expressions for
the difference operator LA(F). This will be done differently in three
different regions of the hodograph, as illustrated schematically in
sketch (d). (Here only positive 6 will be discussed. The procedures

c D
fis fe
{ )

h g t]l a e

1
c M M 0
(wz) (¥n)
Sketch (d)

for negative 6 will be obvious.) For purposes of the present discussion
1+ 1s used to denote some convenient negative multiple of A, where A
is the interval of the finite-difference mesh in the 1,6 varisbles; 1T
is defined according to the relation n¢y = 1y + A. With this notation,

the three regions in the hodograph and the procedures used in each are
briefly as follows (details will be given later):

L <1 € 0: In this region the field is covered with a square mesh

of basic interval A in the 1 and 6 directions. AdJjacent to the upper
boundary the interval is adjusted (made greater than A) so that the
terminal mesh points lie on the boundary. Throughout the region the dif-
ference operator is found by approximation to the differential operator
in the form given by equation (54a).

n > 0: In this region the mesh is formed by lines of constant
r and 1 as shown in the sketch (see also egs. (15)). It is convenient
here to include a line of constant r beginning on the sonic line a dis-
tance A above the uppermost line in the subsonic field. At all points
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(except those next to the sonic line) the difference operator is obtained
by approximating the differential operator in the form given by
equation (54b).5

n < fnpp: Here & reversion is made from 7 to the original vari-
gble w. %his is done to avoid difficulties arising from the fact that 1
extends to -o. A rectangular mesh is employed with basic interval A in
the €@ direction and A' in the w direction. At the right-hand side
of the region the intervels in w are adjusted so that vertical mesh
lines fall at locations Wy and W corresponding to N and Mige At
all points the finite-difference equastions are based not on equation (59)
but on the differential equation (1) for ¥. For this to be permissible,
1y must be taken far enough to the left that equation (59), if used,

would heve reduced computationally to the homogeneous equation (60).

With the procedures Jjust outlined, the mesh points fall into eight
categories, each of which requires a different treatment, These categories
are listed as follows (a typicel point in each category is indicated by a
corresponding letter in sketeh (d)):

&, Subsonic points in 1,6 coordinates

b. Regular supersonic points

c. Supersonic points next to corner characteristic

d. Supersonic points next to sonic line

e. Points on sonic line

f., Points near intersection of sonic line and corner characteristic
€. Regular subsonic points in w,0 coordinates

h. Points next to stagna:l:ion point

In most categories the finite-difference approximation will be obtained
by some variation of the usuel series-expansion procedure. In this proce-
dure the function F at each of a number of mesh points adjacent to the
given point is expanded in terms of a truncated Teylor's series about the
given point. These series can be regarded as simultaneous equations for
the derivatives of F at the given point and solved accordingly. Follow-
ing this approach, we obtain expressions for the derivatives in terms of
the local dimensions of the mesh and the values of F at the points

5In the earlier work of references 3 and U, attempts to devise a
numerical procedure in the supersonic region, using either rectangular or
characteristic coordinates, were not successful. In these reports, which
employed the Tricomi approximation, the difficulty was overcome by elimi-
nating this region and substituting an integral relation as a boundary
condition on the sonic line., For the present work it has been found pos-
sible to set up a successful numerical procedure by having proper regard
(which was not done previously) for the region of dependence of each point
in the characteristics mesh. This was essential here, since an integral
relation like that used before is not available for the exact equation,
Even if it were, however, the present method would probably be preferred
from the computational point of view.
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considered. By substituting these results into the pertinent differential
relations, the required finite-difference spproximations are obtained.

The number of terms retained in the Taylor's series in any given case, as
well as the number of adjacent points utilized, will depend upon the order
of the derivatives to be approximated, the local arrangement of the mesh,
and the degree of accuracy desired. The policy here will be to use the
simplest expressions possible consistent with the analytical and geometri-~
cal situation at the point in question. The requisite accuracy will then
be obtained by reduction of the mesh interval to whatever degree sppears
needed in various perts of the field. The details of the derivation will
be given only when the procedure differs from that ordinarily encountered.
(For detailed examples of the ordinary kind, see ref. 3.)

Subsonic points in 1,0 coordinates.- The situation at points of
this kind is shown in sketch (e). For application next to the upper and
lower boundaries, irregular mesh intervals are
p provided in the vertical direction. These are of
length h and k relative to the basic interval
ha A, By straightforward epplication of the series-
expansion procedure to the approximation of the
differential operator (54%a), one obtains for the

40— 0 5 L ep difference operstor at O
ka
_ 2 [FoiFy KF 1 +hFp ( o >
g LAF) = =2 [ 5 T Tk () 1 Fo | +boFo
Sketch (e) (61)

where the subscripts 0, 1, 2, etc., denote vdlues of F at the correspond-
ing points in the sketch. (The quantity b, that eppears in this and
subsequent finite-difference expressions should not be confused with the
bo that was introduced previously in the treatment of the free-stream
singularity; cf. egs. (21) through (%0).) When the operator (61) is
applied to ¥ at a point O next to the upper or lower boundary, ¥, Or Vg
is set equal to zero as required by the boundary conditions. For a point
O on the line 0 =n.., ¥, is replaced by ¥,/g, to conform with the

variasbles used in the region 17 < Tr (see above).

2 Regular supersonic points.- The arrangement
of points in this case is shown in sketch (£).
Here the adjacent points 1, 2, 3 are chosen to
I 3 lie in the region of dependence of the point O,
vhich for the present flow is the curvilinear

A
a quadrant opening toward the corner characteristic
(o] and the sonic line.® Through application of
Sketch (f) the series-expansion procedure in the r,1

SNote that the increment in r or 1 from one mesh line to the next
is the same as A, the mesh interval on the sonic line (cf. egs. (15)).
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coordinates, the following difference operator is found by approximation
to the differential operator (54b):

[6(xo - 10) 1273
A2

N
6(ro - 10)

LA(F) = ["(Fa -F1-Fg+Fo) + (Fs- Fl)] + boFo

(62)

Supersonic points next to cormer characteristic.- The situation at
a point of this kind is shown in sketch (g). It is known from Guderley's
solution for flow over a convex corner (ref, 16)
that V¥ will have a singularity in the second 2
derivatives at the corner. This means that the
series-expansion procedure is not permissible 3
in this case and some other approach must be
devised. A kA

0

For values of A small enough to obtain
acceptsble results in the mmerical solution, Sketch (g)
equation (59) will ordinarily have reduced to equation (60) by the time
the boundary is reached. We need concern ourselves, therefore, only with
an expression for L, as applied to V. According to Guderley's singular
solution, in the vicinity of the cormer characteristic the variation of
along a line of constant 1 (such as 03 or 12) is of the form

4/8

¥~ (rpp - 1) (63)

where rpp is the value of r at the corner. Although Guderley's solu-

tion is for the Tricomi equation, the same result may be expected for the
exact equation (7). An interpolating function that satisfies condition (63)
and may therefore be used as an approximation to ¥ in the vicinity of the

point O is
4/3
- ¥ - ¥
=) [ror 25 0-10)]

Differentiation of this relation and substitution into expression (5u4b)
glves for the difference operator at the point O

L 2 T
{3 (¥~ ’lfo)‘I-m [(l 3 ¥, \l‘l]} + bo¥,

(6%)

2/38

[6(1'0 zo) ]

In(¥) =
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sonic points next to sonic line.-
(3-3n)/* ——~ A complication arises in this case (see
sketch (h)) from the fact that the deriva-

——(%-21&)2'3 tives of ¥ in the r,1 coordinate? are
R I singular on the sonic line (cf. eq. (17)).
(3) 7 As a consequence, a series expansion in

the r,1 coordinates, like that employed
at regular supersonic points, cannot be

4 3 used here., This difficulty can be over-
come by using an expansion in 1,0 coor-
a »6 dinates, where the derivatives are regular,

and espproximating the differential operator
in the faorm (54a).

To carry out the approximation, the
o truncated Taylor's series for the func-
tion P in the vieinity of the point O
Sketech (h) is teken in the form

2
(n- o)
F=Fo+ (n- 1:10)1?',]o + (9- 90)3'90 +— ano +

' (6 -65)° (n-n,)®
(n=1) (8- 85)Fpg  +—52— Fog, + —5=— Fpp ~ (65)

In this comnection we note that, for mesh points in the vieinity of O,
(n-n,) is of order A2/ wvhile (6-8,) is of order A (see egs. (16)).
This means that the cubic term in ('q-no) is of the same order in A as

the squared term in (6 - 6,) and must be retained in the series.” By

application of the series (65) successively at the points 1 through 7, a

set of simulteneous equations is obtained that can be solved for Frm and
)

Fop ~ Substitution of the resulting expressions into the differential
operstor (54a) gives finelly for the difference operator at the point O

1 )
IA(F) = ( /u)‘“s [7\(1?1+F4) + 0(Fs +F5) + 21Fg - (AI" "'1_96 Fo+Fy) -
3A
3 (> b 3 b 66
'é +U+§T-T|. Fo | + bgFo ( )

%s arises from the fact that, although the expansion is being
carried out in the 1,68 variables, the mesh points are still arranged on
lines of constant r and 1.
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where
2/8 2/8 2/3 2/38
N2 (2-277) -3 (2-3)
- 62/3(32/8 _ p2/3)
2/8
g = 2-3

- 02/3(p2/3 _ l)(3?’3 - p2/3)

. 2__22/3
32/3(32/3 - l)(32/3 - 22/3)

When the point O is close to the corner - as at the point 4f -in
sketch (d) - a further complication arises since the points 5, 6, and 7
of sketch (h) are no longer available., As will be seen later, however,
analytical knowledge of the nature of V¥ vwhere the sonic line approaches
the corner characteristic can be used to obtain expressions for vn and Vg

at point 2. (Here only ¢ is of interest, since at point d! equa-

tion (59) will have reduced again to equation (60).) By differentiation
of the series (65) with respect to 1 and @ and application of the result-
ing expressions at 2, simultaneous equations can again be obtained that

can be solved for Wﬂﬂ and weeo. In this way the following formula is
(o]

obtained for the necessary difference operstor when point O is located
et ar:

IA(‘!’) = -(_3';-/7:::;:/_5 [7\(*1- ‘l’g) + 0’(‘,’3— ‘yg) + T(‘lf4" Ilfa) =

2/8

1 2y - 34
L (} +0 4+ T+ 2:kw° Vo) + 27 l; wﬁg +
(>

T(A4o-3r- %)A"’ea] + Do (67)
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where now
Y- A S Sl
22/3 .1
pl/3
0 =——"7
(2278 - 1)
_2¥8 -2
02/3 _ 3
(%Afh o Points on sonic line.- The
arrangement at a point of this type
3 is shown in sketch (i). The Taylor's
series for T as an sxpansion about
A 4 point O is again taken in the form of
equation (65), where now 7, = O.
A A e By applying this series at points 1

2 1 o through 6 and solving the resulting
equations for an , one can write the
o

A
5 difference operator, by approximation
J to equation (54a), as
]
Sketch (i)

1
£26(t+ 1) (t+2)

IA(F) = [t(ta- 1)Fs - 2t(t% - 4)F; - -13; (Fs+ Fg) +

3(Fa+Fs) - (-g + Tt - t3> Fo] + boFo (68)

where t is related to A by

t = GDZISA'” S (69)

Points near intersection of sonic line and corner characteristic.-
At the two points near the intersection of the sonic line and corner
characteristic (points £, and £f» in sketches (d) and (J)) the difference
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operstors (68) and (66) cannot be used since the necessary adjacent points
are not present., These two points can be eliminated from the problem,
however, by use of an interpolating function in the region in question.

An sppropriaste function is provided here by Guderley's singular solution
for flow over a convex corner (ref. 16). Though determined for the Tricomi
equation, this solution should provide a good approximstion to the corre-
sponding solution for the exact equation for small values of 7. The
details are as follows:

According to Guderley's solution, the variation of V in the vieinity
of point D of sketech (j) can be represented by

v = BlnPrrz(ts2) (70)

vhere B is a constant and { is now defined by

_ Nep - 9)°

s (72)

The function £y7, given originally by Guderley in terms of hypergeometric
series, can be represented in closed form by

£rp(852) = |s®- l|-2l3[<% + s)(l- s):"/3 - <—;-' - s>l+ s)lls] (72)

where now

_ -9
=j(9D'9) '%a_j:: )

To determine the constant B, the func-

tion (70) is made to pass through the value _-1
of ¥ at the mesh point 1 of sketch (Jj). g |
We thus obtain finally for the interpolat- !
ing function in the region in question )

vl 2 (B
In|"£1z(;52) (T4)
lls(en- 0)*'® Sketch (J)

\lf:s
3
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This function is used to eliminate the values of ¥ for points £, and fo
vherever these values appear in the finite-difference equations for neigh-
boring points. After differentiation, equation (T4) also provides the
necessary expressions for the derivatives ¢ and Ifl’e required in
equation (67). L 2

! Regular subsonic points in w,8 coordinetes.-
: A typical point, g, of this category is shown in
ha sketch (k). Here provision must be made for an
irregular mesh interval in any direction from O as
indicated in the sketch by the constants e, f, h,
and k., As previously explained, the difference
equation is obtained in this case by approximation
ka to equation (1) rather than to equation (59). The
result, as obtained by the series-expansion proce-
dure, can be written

ed ¢ fa'
4. 0 -2

3
Sketeh (k)

1+ eP 1- £P Q [e+f+(e2-f2)P hQJ:{] _
A+eP g 1P g (k¥ +h¥s)- +-2 |9, = 0
T(er ) 2 e(er®) * ik(n+k) (k%1 +1%) ef(e + T) °

(75)

where

7~ P
l- W
p = A 7+1
2wo ry-1 2
1l - W
y+1 ©
Q= o ) 1 l‘Woz
A Wozl y-1 2
- W
r+1

For application at points on the line 1 =175 (see sketech (d)), %= in

equation (75) is replaced by gV, as required by the variables used in
the region 1 > 7y.

Points next to stagnation point.- The use of equation (75) at points
next To the stagnation point - a8, for example, at point h in sketch (d) -
is not practical. This is due to the fact that the final values of ¥ are
obtained by taking the difference between two quentities which, according
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to the boundary conditions at the stagnation point, are C
very nearly equel in this vicinity (see egs. (3)
through (5)). This difficulty can be overcome as follows:

The situation in the region adjacent to the stag-
nation point is shown in sketch (1). For small values of !

w, a solution of equation (1) that satisfies the boundary h

condition that ¥ = O on the surface of the plate (where

Y . again represents either ¥* or ¥®) is given by the 2

geries

¥(w,0) = Diw sin(6+a) + Dow"sin[2(6+a)] + 3
AlA

D, 8in(6+ a)

Daw<sin[3(6+a)] g 21D

+ o(w*)  (76)
Sketch (1)

Here o 1is the angle of attack and D;, Do, and Dg are constants. By
writing equation ('76) for any three points 1, 2, 3 on the vertical line
w = 2A' and neglecting terms of O(w*), we obtain three simultaneous

equations for D,;, Do, and Dg. These equations can be solved to obtain

Dy = D1(¥y,%,¥s) (77

and similarly for Dy and Dg. With these relations and equation (76) we
can then express ¥ at any point h on the line w =A!' in the form

Yh = Yh(wl,YZ,Ya) (78)

These expressions are used to replace V¥, in the difference equation (75)
when that equation is written for mesh points on the line w = 2A'., In
this manner points next to the stagnation point are eliminated from
explicit consideration in the finite-difference scheme. For best accuracy
the points 1, 2, 3 should be placed at approximately equal intervals
between the upper and lower boundaries. TIf this is done, no difficulty

is found in obtaining satisfactory results without a reduction in mesh
size in the vicinity of the stagnation point.

Distribution of mesh points.~ The mesh used for an actual calculation
is not uniform as in sketch (4) but has a different spacing in different
parts of the field, The distribution of mesh interval for the present
solution (e = 13°) is shown in figure 6. This particular distribution
involves a total of 880 finite-difference equations., The same distribution
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was used for both V2 and ¥®. As in references 3 and 4, the transition
between the various parts of the graded mesh was accomplished by the use
of overlaepping fields in essentially the manner described in reference 18,

Solution of Finite-Difference Equations

The solution of the finite-difference equations was obtained by an
iterative process involving both relaxation techniques and step-by-step
procedures. In the first stage of each iteration, the values of ¢ for
the column of mesh points immediately to the right of the sonic line (as
obtained from an initial guess or from the previous iteration) are con-
sidered fixed. On the basis of these values, a boundary-vaelue problem
is then solved for the points in the subsonic field and on the sonic line.
This is done by the use of standaerd relaxation techniques (see, e.g.,
refs. 19, 20, and 21). In the second stege of the iteration the values
of Y obtained on the sonic line as a result of the first stage are used
as the initial values for an initial-value problem in the supersonic field.
This problem is solved in simple step-by-step fashion proceeding along
the characteristics running from the sonic line to the limiting character-
istic. This is done first for the characteristic adjacent to the corner
and then for succeeding characteristics in the interior of the flow. By
means of this procedure one obtains a new set of values for V¥ at the
points immediately to the right of the sonic line. Those values are now
considered fixed again, and the entire process is repeated. This con-
tinues until a consistent solution is obtained for the complete set of
finite-difference equations.

The numerical work for the present solution was performed entirely
on a desk calculator. In the initial steges of the iteration process the
relaxation solution of the subsonic field was rarely carried to completion
at any given stage. Over- and under-relexation were, in fact, found use-
ful to counteract the changes fed back by the subsequent work in the super-
sonic region., Within the subsonic field, block relaxation was used exten-
sively. Such devices were, in fact, essential to the solution of the
problem in a practiceble length of time.

The results of the calculations are shown in figures T to 9 as contour
meps of ¥ in w,d coordinates. Numerical values are also given in
table II at the end of the report. For the reasons explained in part I,
the calculations were made for a value of 7y of 1.405. The results for
¥2 in figure T and table II correspond to A8 = 100; the results for o
in figure 8 and table II to AS = 1,000. These values, which fix the
strength of the singularities, were chosen to give a convenient level for
the dependent verisble throughout most of the field and to provide an
sbsolute value of approximately 1 for the constant C in equation ().
For both solutions the work was done to integer values of ¥ in most of
the field, and the residuals in the relaxation work were eliminated to
within #2 (with due care that residusls in any given area were not pre-
dominstely of the same sign). Near the boundaries, where V¢ is small,
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the work was done with values of V¢ to two decimal places, and the
residuals were eliminated to within £0.02. The final solution for ¥,
given in figure 9 and teble II, was calculated from equation (4) with
C = -1.007, This figure was arrived at from the relation

which is obtained by substituting equation (76) into equation (5). The
velues of D32 and D;® were computed from an equation of the form (77),
as obtained in the treatment of the mesh points next to the stagnation
point.

Transformation to Physical Plane

The transformation from the hodograph plane to the physical plane is
accomplished by integration of equations (51) or (52). Since the necessary
integrations are chiefly along lines of constant w, 6, r, or 1, the equa-
tions simplify considerably in application. The actual integration was
carried out 1n the present work by mechanical means on the basis of plots
of the eppropriate integrand. The values of the derivatives of ¥ +that
appear in the various integrands were found by numerical differentiation
of the values listed in table II. A detalled explanation of the procedure
as applied to a similar problem has been given in reference 3, and little
more need be said here. It should be noted, however, that when the inte-
gration of equations (52) is performed along a line of constant r or 1,
the expregsion to be integrated reduces to the form £(w,9)d¥. In this
case, therefore, no numerical differentiation of ¥ is required, which
is advantageous with regard to the accuracy of the final result.

With the distribution of w known on the lower surface of the plate,
the corresponding pressures can be calculated from the usual isentropic
relations., This follows from the fact that the flow on the lower surface
is irrotational (see Description of Flow Field).

CHARACTERISTICS CONSTRUCTION (OF FLOW
OVER REGION OF SEPARATION

As expleined in part I, the calculation of the region of separation
on the upper surface was accomplished on an electronic computer by means
of a numerical method of cheracteristics. The method employed was based
on the original Prandtl-Busemann procedure for two-dimensional irrotational
flow (see, e.g., ref. 8). For the results shown in figure 1 the increment
in stream angle between successive points in the characteristics net was
taken as 1° throughout most of the field. In a smell region adjacent to
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the leading edge this increment was reduced to 0.2°. A check calculation
using an increment of 2° outside the latter region gave results negligibly
different from those obtained with 1°., With the 1° increment, the number
of calculated points in the reglon of dependence of the separated stream-
line was approximately 6600. To obtain the required initial date on the
limiting wave (i.e., x/c and y/c as functions of r) it was necessary to
interpolate between the values obtained from the mesh points used in the
transonic calculation (see fig. 6). This was done graphically over most
of the range. Near the leading edge, however, the interpolation was done
analytically on the basis of an interpolating function compatible with

the nature of the singularity in the vicinity of the cormer characteristic.
The values of the initial dats are listed in table III for anyone who may
wish to calculete the flow over an airfoil with another type of upper
surface,

Ames Aeronautical ILeboratory
National Advisory Committee for Aeronautics
Moffett Field, Celif., May 7, 1956
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APPENDIX

NOTATION

Primary Symbols

8y critical speed (i.e., speed at which speed of flow and speed
of sound are equals

A constant determining strength of singularity

b function of 1 in differential equation for V¥ (see egs. (T)
and (12))

bo,b1,bs constants in series expansion for b (see eq. (13))

c chord of plate

c constant in superposition equation (see egs. (4) and (5))
P = Py

Cp pressure coefficient, T

D3 ,Dn,Dg constants in series solution for ¥ in vicinity of stagna-
tion point (see egs. (76) and (TT))

e,f,h,k length of irregular mesh intervals relative to that of basie

interval

:E’I({; ;n), functions appearing in singular solutions of Tricomi equation

£17(¢5m) (see egs. (19) and (70))

¥ general symbol for variable in linear operator (may represent
¥, M, orX) '

g function of w in transformation from ¥ to ¥ (see egs. (6)
and (11))

81 By undefined functions of ¢

i index of summation (see eq. (22))

I integral defined by equation (49)

LB( ) differential operator (see eq. (54))

In( ) difference operator approximating Iy( )
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maximumm value of index i

quantity introduced in equation (56) as shorthand notation
for quantities appearing in equations (36) and (39)

exponent of I'ql in singular solutions of Tricomi equation
(see egs. (19) and (70))

static pressure

total pressure

constants in solution of equation for ¥; (see eg. (30))
dynamic pressure

characteristic coordinates (see egs. (.15) and (16))

any length in flow field; also function of 17 and 6 defined
by equation (42)

quentities with absolute value 1 and sign of 1 or 6

index of summation (see eqg. (26))
Tricomi operator (see eq. (18))

speed of flow made dimensionless through division by critical
speed

Cartesian coordinates (x in direction of free stream, y
vertical, origin at leading edge of plate)

distance along plate measured aft from leading edge

angle of attack

function of w (see eq. (53))

ratio of specific heats (1.405 in numerical work)

dimensionless distance in free stream between given stream-
line and stagnation streamline

basic mesh interval in 1 and 6

basic mesh interval in w
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I,II

0,%,2,ete,

()0

function of 17 and 6 defined by equation (20)
function of w in transformation from ¥ to y (see eq. (10))

inclination of flow measured counterclockwise from free=
stream direction

density of fluid

total density of fluid

function appesring in solution for ¥ (see eq. (22))
‘transformed stream function (see eq. (6))

solution représenting free-stream singularity for Tricomi
equation (see eq, (19))

singular correction functions (see eq. (22))

function appearing in solution for ¥y (see egs. (27), (28),
and (30))

stream function
Subscripts

conditions in free stream
conditions on separated streamline

values corresponding to maximum speed (i.e., to speed
attained by expansion to a vacuum)

velues of 7 and w at change from 7 to w coordinate in
finite~difference mesh

value at prescribed mesh point
Superscripts

quantities pertaining to solution with antisymmetric
singularity

quentities pertaining _to solution with symmetric s:l.nglﬂ.a.rit.y

first and second derivatives of function with respect to its
argument
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TABIIE I."'

NACA TN 3723

VALUES OF w, 1, 8, AND b (7 = 1.405)
W 1 g -b
0 =00 © (0]
.1 -2.037 | 1.736 -——
.16 -1l.745 | 1.671 -
218 | -1.52k | 1.615 —
272 | -1.343 | 1.566 —~——
326 | -1.190| 1.520 -—-
379 | -1.056 | 1.h77 ——-
432 -.935| 1.436 .261
.48k -.826 | 1.395 .300
-539 -.725| 1.356 343
.585 -.631| 1.317 .368
.635 -.545 ] 1.280 Jio
.684 -.463 1 1.243 482
.T32 -.386] 1.206 .540
<TT9 -.313| 1.170 .593
.825 -.245 1.135 .652
871 -.179| 1.100 T2
.915 -.116| 1.065 STT7
.958 -.057T| 1.035 .850
1.000 0] 1.000 .918
1.067 .088 o7 1.041
1.107 .1k0 917 1.125
1.1 .183 .890 1.200
1.200 .258 82 1.339
1.252 .323 .800 1.k75
1.323 .09 <Thl 1.685
1.428 .536 .660 2.055
1.522 .650 .585 2.531
1.609 .54 .515 3.015
1.690 .851 Js2 3.641
1.765 .943 .39% 4.348
1.836 1.031 .340 5.193
1.902 1.115 .201 6.378
1.96% 1.197 246 7.461
2.022 1.275 .20k 8.986
2.076 1.351 170 | 10.89%
2.127 1.425 .138 | 13.301
2.173 1.k97 109 | 16.406
2.215 1.568 .08%k | 20.468
2.254 | 1.637 065 | 25.904
2.289 1.70k .08 | 33.39%
2.389 1.950 .011 —-—
2.437 2.252) 0 .
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TABIE ITI.- ‘I‘a, YS,AND‘I’ AS FUNCTIONS COF wANDG(Aa'=lOO, AS=1000,
: 7 = 1.h05)
w ] d o b 4 v ] ¥ b o 4 v e | 20t
1.000 [ 2.80| 1.B7 | L.B2| 0.067|0.892]0.05| 1,029 719| 25| 0.788 |0.50 | 1,060
2.70{ 4315 | ko3| .48 Jo| 1,286 937 3 A5 | 1,285
2.60] 6.82 | 6.60| .ot 35| 1,68T7| 1,152 . 1,587
2.33 9.80 | 9.46| . .30] 2,207 1,450 T .35 | 2,000
2. 13.02 | 12,55 . +25 2,072 1,882| 1,1 .30 2'3172
2.20] 20.k| 19.6 . 20| 4,57%| e,532] e, .25 i,
2.00] 29.%| 28.0] 1.25 JA5| T,55%| 3,617 3,911 20| 4,635
1.80] bo.5 | 38.5| 1.87 .10| 1%,590| 5,685| 8,864 A5 | 6,
1.60| 55.2| 32.0|] 2.83 05| 34,178 | 10,h23 23,6:112 .10 | 8,326
14| 5.5 T0.5| L9 0 1,078 | 17,625| 16,6 .05| 8,033
1.20| 105.6 | 97.5| T7.39 =.05]=31,963 3,895 -k1,930 ] 1,189
1.00| 153.2 | 138.5| 13.T -,10|-12,202 | %,722|-16,957 -.05 | =5,597
«90 191 12| 17.8 ~.15| -4,865| 2,838| -7,120 =10 | =5,
.80 2k 21k| 95.5 ~.20| -1,387 -2,094 =15 | -3,
.70 au 212| k0.0 ~.20 | -1,159
'S0 | 3B %3 |En| 38| 2B | | | nim
. . . . . . . »3
A5 5721 557 163 2. u.gi 10.68| .ko5 k0| 1,636
ko iﬁ'{ 667 225 a.gg 15. .72 .569 35| 2,031
«35| 1,47 8 ﬁ 2. 19.718| 19.05| .T60 .30 | 2,563
.30] 1,505 | 1,01 2.20f 30.1| £9.0f 1.2 25 g,ago
25| 2,067 | 1,300 8 2.00] k2.9| ko.9| 1.86 .20 | k,254%
.20 3,037 1, 1,297 1.80| 58.9| 55.9] 2.79 15| 5,h0h
15 2957 | 2,530 2,50 1.60] 80.5| T5.7| k.23 10| 6,209
Jdo| 9,835 | 3, 5,02k 1.ho :u.o;{ 103.1} 6.81 .05{ 5,250
05| 31, Ty 2h,002 1.20| 156.4| 143.5| 11.8 0 1,199
0 1.00| e30.2| 207.2| 2Lk -.05 | -2,801
=05 "29:620 6:770 "36:"'39 -90 286 14 T =10 '3:601
-.10{ -7,81% | 2,841 -m,g;a . 263 %‘? I -.15 | 2,506
-15] -2, 1,217| -3, .70 63;3( 68 ~-20| -896
=20 8 30L| ~981L +60 531 13
o3| 5| 8| e8| 1: o S B = Bl e e A
. . . 5 . . .
o 1,024 752 264 Jof 1,h07] 1,026 373 2.60 | 15.84 | 15.31
2331 1,317 92 386 35| 1,806] 1 58| 2-23 21.51 | 20.72
.30| 1,751 | 1,138 584 30| 2,393| 1,583 799 2, 27.60 | 26.55
25| 2,428 1,133 925 .25 ﬁ,299 2, 1,238 2.20] ¥.%} 39.8
20| 3,599 | 2, 1,581 20| 4,937 2,81733_ 2,182 2.00] %8.%| 55.7
13| 6,012 | 2,8 3,137 A51 T,637| 3, 3,768 1.80| 8o.0| T5.8
.10| 12,349 | &, 7,768 .10 n,aig 5,199| 7,389 1.60 | 109.0| 102.6
.05 42,58 | 9, 33,123 05| 21,7 9,357| 12,317 L.ho| 149.9 Bg-?
0 966 | 57,782 3;{,233 0 1,126 { 12,538 |-11,502 1.20| 211.3 .2
=05 "*0’5"8 :738 }3"8 =05 -19,'!-29 818”‘5 '%:338 1.00| 309.9 1 279.7
-.10/-10,256 | 3,601|-13,832 -.10|-10,737| %4,823|-25,5%% .90 333 m
~.15| -3,64k 1,2590 5,245 -15| -4, 2, ~7,238 .80
=20 -933 3| ~1,409 20| -1, TT6| 2,222 g ga5 232
.927|2.80] 2.73] 2.65| .098| .821| .45| 1,213 921 285 Eg 1,1 921
2.70| 5.89| 5.43| .20l . 1,510 | 1,107 395 . 1, 1,077
2.60] 8.821 8.55 ﬁ .35 1,923 1,gg 58T Jdo| 1,65 | 1,275
2.50| 12.38 | 11.96] . .30 a,iu 1, 81k 35| 2,004 | 1,522
.90 237 212}  23.0 25| 3,u8| 2,171| 1,231 .30| 2,883 | 1,8
.80 300 264 34.0 201 u,84%7| 2,862| 21,965 25| 3, 2,
.70 393 m 5.6 13| 7,195 3,924} 3,253 20 :Z?G 2,736
. 90.9 .20| 10,830 | 5,572| 5,219 5| %458 i:
zg 58| 156 .05 13,050 T,ﬁ 5,007 0| &,
. 703 219 ° 1 9 8,348 .05 | 3,669
. 1)157 81"5 305 =.05 "10:663 7:1‘8 -13:198 [s) 1)%
.35| 1,901 1,037 5 -.10| -8, 4,58 |-12,878 =03 | ~L,
30| 1,984} 1,306 669 -15] 4,288 2, ,T32 -.10 | 2,123
25| 2,764 | 1,690 1,061 -.20] -1,360 800| 2,166 ~15 | -1,663
201 &, 2,279 1’223 -.20| =630
A5 6, 3,271| 3, .788| 2.80| &.57 h.l;g 165
0| 14,226 | 5,232 8,956 2.70| 8.82] 8. ﬁ .693 | 45| 1,378
03| ¥4,279 | 10,532| 33,671 2.60| 13.37| 12.9%| . ho| 1,638
0 1,023 | 27,701 26,878 2.%0| 18.28 | 17.6%| . .35| 1,938
-.05]-l2,1 %972 -52,219 -90 ggg 301 ig -30| 2,350
-.10 -u,gs7 ,279|~16,267 .80 ﬁ'{h 25| 2,810
-15| <k,121 1,951 -6,3T7 .70 25T Th (&L .20 S,gz
-.20| -1,20% 595] -1,803 -60 53 618 130 151 3,

Hote: All values of @ 3in radians.
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52
TABIE IT.- ¥%, ¥S, AND ¥ AS FUNCTIONS OF w AND 6 (A% = 100, A® = 1000,
7 = 1.405) - Continued
w ] ) ¥ b § w ] } o ¥ ¥ x 8 ) ad o 4
0.693 | 0.0 3,580 | 3,56 -8 | 0.60% | 0.30 | 1, 1,5%6 | 18%| 0.k50] 0.70 581 30
05| 2,7%0 | 3,899 | -1,287 25 l,gig 1,794 i .60 %z 670 29
o 1,165 | 3,883 | -2,7h6 .20 | 2,044 | 1,992 38 gg g 67 20
-05| =315 | 3,423 | -3,822 a5 | 2,027 | 2,069 | -158 . 862 -2
=10 | -1,230 | 2,599 | ~3,727 10 | 1,84 | 2,289 30| sm| o3
=15 ﬂ 1,605 | -2,61% .05 | 1,478 | 2,308 | -848 .20 867 978 -118
=-.20 564 | 967 o 990 | 2,185 | -1,231 .10 THO 928| -195
-.05 510 1,222 =140k 0 535 Zg -235
.662]|2.80| 6.%9 | 6.26 ﬁa& ~.10 16k | 1, -1,312 .10 296 -188
2.70 12.& 1.88| . -.15 1 92k -gig
2.60| 18. 17.73| 672 -.20 -16 328| - Ao5| 2.80| 10.72| 10.32| .351
2.50| 24.87 | 23.9% | .92% 2.60| 29.80| 28.68| .98%
50| hes 221 ko| 576 45 | 1,20 (1,071 | 1R 2.50| 50.8h| 48.51| 1.73
| | | B el bl e ol - S| wme| 5| 3%
. . 5 , . . . 3.
.60 878 ™5 129 .30 | 1,609 1,% 106 1.80| 13h.6] 21¢8. 5.15
50| 1,172 970 gk 23 | 1,708 | 1, 51 1.60| 176 16;-8 T-1
451 1,363 | 1,119 37 -2 | 1,750 | 1,790 =53 1.4o| 229.2| 8.0 9.7
4ol 1,593 | 1,297 287 a5 | 1,704 | 1,908} -237 1.20 %.9 0| 12,8
35| 1,85 | 1,512 341 230 | 1,584 | 1,960 -hho 1.00 4 7| 16.2
.30| 2,177 {.1,768 397 05 | 1,26% | 1,946 | -607 <90 k39 16
25| 2,515 | 2,071 428 o gg 1,89| -919 -8 hot ;E T
.20 2,21{2 2,2 3% -.05 1,57 | -1,009 <0 560 ] 5
a5| 8, 2,768 185 -.10 285 | 1,208 ﬁ .60 623 608 10
.Jdo| e,8 | 3,087 -309 -5 ny ™7 30 678 674 ~1
05| 2,152 | 3,270 -1,142 -.20 32 -236 Ao s T30 -2
] 1,12 | 3,193 | -2,09% <30 nol 767 ol
-.08 16 | 2,80 -2,24| -550{2.80 | 8.3+ | 8.03| .292 «20 763 ~93
-20| -héo | 2,160 -2,635 2,70 | 15.75 | 15.16 | .555 .10 67| -129
-15| -3t | 2,353 -1,880 2.60 | 23.39 | e2.53| .833 (] gﬂ -0
-:20| -2 ¥781 =702 2.958 31'.%_9’ 30‘.25 1.:ng -.10 21 =107
.632| 45| 1,328 | 1,116 204 .80 565 [t k7| .362| .90 x2 koo 9
b0l 1,585 | 1,28 236 -T0 6% 621 63 .80 158 146 8
35| 1,789 | 1,4 266 . &3 ™7 a -T0 504 ko5 5
.30 1,98 | 3, 283 50 1,22 9‘% o4 .60 546 sha 1
85| e,e23 | 1, 267 . 1,243 | 1,1 g‘t .50 576 585 -13
20| 2,403 | 2,207 18 .30 | 1,434 | 1,377 T R 590 613 -27
A5 2,445 | 2,462 =34 .20 | 1,50% { 1, -102 .30 sTT 622 -9
0| 2,248 | 2,665| -u36 .10 | 1,307 [ 1,680 | -394 .20 23; 598| 69
.05 1,760 2:7‘*8 =1,007 o 831 lyﬂ'f '697 10 330 "83
o 1,062 | 2,639 -1,52 -.10 336 999 | =670 o isui ns -85
-.05 38 | 2,311 ] -1, -.10 sk -62
-.10 -63 | 1,785| 1,860 | .498|2.80 | 9.21 | 8.87} .318
-a235]| -198 | 1,125 -1,330 2.60 | 5.7 | 2%.713| .900| .323|2.80| W.75| 11.33] .355
-.20 -96 39| -hg8 2.0 | 43.81 | 42.08| 1.58 2.60| 32.57| 3r.40| .990
2.20 | 4.61 62.0{ 2.43 2.i0| 5.8 | 52.8.| 1.69
6ok |2.80| TH2] T7.35 263 2.00 | 8.6 82.6 3.57 2.20| 79.k5| T76.48 2.20
2.70| ik.ok | 23.53] 500 1.80 | 120.7 | 1149 | 5.16 2,00 | 107.63 | 103.50| 3.47
2.60| 20.90 | 20.1% .86 1.60 | 16L.1 | 152.5 T.5 1.80| 240.70 | 135.26| L.62
2.50| 28.15 { 2r.11] 2.036 140 | 25.3 | 202.7| 1.2 1.60]180.15 | 172.95| 5.95
2.50| 35.90 | 3%.50] 1.349 1.20 | 290.7 | 2.9 | 16.8 1.%0 g.y{ 08.62| 17.38
2.20| s53.4 | s.2] 211 1.00 | 398.% | 370.% | 25.% 1.20 A3 | 273.65| 8.51
2.00] TA.7| .2 2.11» .90 h69 136 30 1.00 | 3u9.27 Egg.hs 8.0
1.8 1007 | 96.5 .64 .80 56 =3 39 .80 | 4118.06 99| 5.12
1.60| 137.5 | 129.7 6.9 -T0 660 609 &1 60| 476.29 | 4T7.23| -h.kO
1.k0] 187.% | 1715.2| 210.9 -60 780 g 5 4o | 493.70 | 513.63 | -23.63
1.20]| 260.1 | 240. 17.8 .50 913 5. -20 | 430.05 | ¥75.01 | -k8.39
1.00| 372.2 | 339.7| 30.1 4o | 1,043 | 1,002 34 o 264.98 | 315.38 | -52.67
90 k50 %09 38 -30 | 1,13k | 1,149 -2k
80 2’9ﬁ ko1 54 20 | 1,127 1,22 -133| .200|2.80] 11.28{ 10.9%| .262
.0 613 6 .10 968 | 1, -286 2.60| 3.09} 30.16| .720
60 879 T66 108 0 612 | 1,068 | -hok 2.k0| s1.57| 50.0%| 1.18
S50 1,126 970 150 =.10 343 685 | «3u49 2.20| 73.12} 70.97} 11.65
A5] 1,273 | 1,008 168 2.00| 96.06| 93.30| =2.10
Jol 1,537 § 1,25 184 | k50| .90 k60 133 2h 1.801120.59 | 117.27| 2.48
35| 1,64 | 1,0 193 . 532 501 28 1.60 | 146.59 | 1k2.85| 2.2
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TABIE II.- ¥, ¥®, AND ¥ AS FUNCTIONS OF w AND 6 (A% = 100,
y = 1.405) - Continued

w [ ) ad x° Y w ] ¥ b ad ¥ w ] -l
[0.200| .50 | 173.48 [ 169.6L| 2.65 | 1.218| 2.80 | 0496 | -0U83 | .0 [L-3D| 21|
1.20 | 199.87 | 196.35| 2.11 2.70 [1. . gﬁe .225
1.00 | 223.12 | 220.72| .811 2.60 | 22408 | 2.339 | . 5i A75| s4s
.80 §gm ?%E-L% za h.orr| 3.947 | .1k
.60 .05 | 24h.25| -h.96 2. %.961 | 5.757 | .2173 |1.357|2.70 [-039L
RT] 22202 229.31 | -8.87 2.30 | 8.005| 7.724 | .2997 2.60 | .68
.20 | 176.1 186.15 |-11.35 2.20 | 10.26| 9.88]| .3%2 2.23 1.8%L
103.h2 | 111.87 [-9.255 2.10 | 12.6% | 12.16| .502 2. gIZT
2.00 | 15.25 1l+.5z .623 2.30 |h.558
1.083| .h23 578 k7| 128 1.90 | 18.18 17.!3;2 T67T 2.20 {6.096
375 TS 535 | 176 1.80 | 21.k1| 20. 922 2.10 | 7.78
.395 903 650| 23k 1.70 | e4.95] 23.67| 1.139 2.00 9.215;
275 | 1,182 369 1.60 | 28.96|27.33| 1.38 1.90 |11,
225 | 1,610 1,02k| 579 1.50 | 33.72| 31.72| 1.72 1.80 13.%9
A5 | 2,339 1,352 978 1.ko gg.?,e iﬁ.&o 2.1k 1.70 {15.93
125 ,T59 1,878 | 1,867 1.30 81| be.80| 2.70 1.60 [18.47
05 | 1,229 2,882 | 4,326 1.20 | 53.81| k9.92 2.&8 l.zg 21.35
.25 | 21,77 ,456 6,221 1.0 | 63.7.| 58.82 gg 1. 2k. 75
-.025 | -20,119 ,ggg-ﬂﬁ-,m 1.00 | 76.57| T0.02 6. 1.30 |28.76
=075 | 5,713 2,0% (-7,572 +90 | 92.18]83.34| 8.25 1.20 [33.44
- -1&1;: 833 |-2,TT5 .80 | 11k.6 | 103.0| 210.8 1.10 ﬁg.a
-175 598 .70 | 44,5 ]128.3| 15.2 1.00 R}
. 188.0163.2| 23.6 +90 {55.79
1.138| 2.85 | .0579 . 00208 zg 253.8 | 211.8 | %0.5 -80 167.23
2.75 | 1.215 1.183 | .08 . 357| 285 70 -T0 | 83.8
2.65 | 2.8%7 2.765 | .0997 .35 433 35 95 60 [106.1
2.22 %.809 4.653 76 .30 53h 131 .Eg 1138. 4
2. T7.026 6.78% { 2560 .25 87 189 . 187.
2.35 | 9.433 9.102 .32632 .20 883 | 6o 276 -30
2.25 | 12.10 1L.65) . A5 | 1,206| 766 k 25 ﬁ
2.15 | 1hk.93 11;.23 .593 10 | 1,730 1,008 .20
2.05 | 18.03 17. -T36 =10 | <306| 136 3
1.95 a.gg 20.55| -907 1.387| .225| 300
1.85 | o5. 2k.25| 1.113 | 2.257| .325] Loo| 309 88 .
1.75 | 29.67 28.19 | 1.355 -1 23] W45 31 122 | 1.5a7]|2.65 |.0352
1.65 zg.:e 32.59 1.3 225 6291 L 175 2.55 | .703
1.355 .26 ﬂ.m 2. A5 8200 560 256 2,45 [1.648
1. k7.03 02| 2.56 1251 1,119) 709 Los 2.35 |2.718
1.35 | 54.86 51.2% 3'22 2.25 |4.037
1.25 | 64.5L %59.86 L1k | 1.292| 2.75 | .0k36 | .ok2k | .00256 2.15 |5.385
1.15 | 76.39 70.56| 5.30 2.65 .889| .866| .0305 2.05 | 6.86
1.05 | 91.8% 8k.02| 7.2 2.25 2.091.| 2,031 .0731 1.95 | 8.38
.95 |110.55 100.02| 9.80 2.45 | 3.538 ahas 126 1.85 |10.03
.85 | 137.3 i123.7| 12.7 2.35 | 5.169 | k.993 1883 1.75 |11.87
.5 12.;{]'-:.1 153.7| 18.% 2.25 | 6.93|6.688 | .2507 1.65 ]13.87
.65 T 195.3| 28.0 2.15 | 8.87| 8. ﬁs 1.55 {16.0%
ﬁg 3% 253.1] 18.1 2.05 | 10.90| 10. . 352 1. 18.58
. 339 8 1.95 | 13.12]12.55}] .538 1.35 [21.38
4o 516 99| 1 1.85 | 15.61] 14.87| .659 1.25 |24.83
.35 636 78| 155 1.75 | 18.34| 17.46 804 1.15 |28.82
.30 580| 225 1.65 | 21.32] 20.22 974 1.05 |33.78
25 | 1,050 79| 306 1.2; 2k, 701 23.28| 1.18 .95 23.96
.20 | 1,433 911 1. 26.;{0 26.99| 1.h6 .85 |i8.08
213 | 2,018 1,198| 8n .35 | 33.51( 32.28| 1.83 - {57.98
10 | 3,319 1,667 1,640 1.25 .gz 36.30| 2.31 .65 | 2.4
.05 | 6,370 2,550| 3,801 1.15 64| k2,32 | 2,97 gg 91.8
=05 | -4, 1,79% |-6,630 1.05 .01| 49.84| 3.80 . 120.2
=10 | -1,666 The |-2,41% .95 | 64.91]59.31| S5.17 .35 [163.%
=13 = 161 .83 | 18.17| 0.62) 7. 25| 232
5 | 97.2| 87.% 9.2
1.179| .3713 k69 261; 103 65 1123.0]209.0} 13.1|1.k70]|2.60 [.0319
.325 581 361 142 .55 [160.0|138.9] 20.2 2.33 .632
275 36 529 . 216.6 | 180.5 | 34.8 2. 1.%71
225 958 656 <35 305 eh3 60 2.30 |2.
73| 1,307 83| in .30 3'513 286 82 2.20 [3.596
.125| 1,895 1,09% zgz 25 Elss 13 2,10 (k.81
075 | 3,007 1,520]| 1, .20 8k 163 2,00 | 6.07
=075 | -1,505 675 |-2,185 A3 | ™ 239 1.90 | 7.39
125 331 7| 478 1.80 | 8.82
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NACA TN 3723 55
TABIE II.- ¥, v, AND V¥ ASFUNCTIONSOF w AND 6 (A% = 100, A® = 1000,
= 1.405) - Concluded
W ) il v 4 W 8 v ¥ ¥
1.01k | 1.00 | 2.92| 2.75 U5 1720077 | 1.85 | 0070 | .0068 | .00025
.90 | 3.23| 3.03 AT 1.7 116 113 .00h1
80| 3.65| 3.4 211 1.65 .29 .2h2 .0088
1.25 .382 ﬁgl .0138
1.950 | 2.05|.0110| .0107 | .00039 1.h5 .50k 87 L0187
1.95| .193( .188 | .0067 1.35 .605 .584 .0232
1.85| k28| M6 | .0151 1.25 .69 .67 . 0270
1.75| .680] .659 | .02k5 1.15 .T6 .T3 .0318
1.65| .931| .900| .0343 1.05 .81 TT .0359
1.25 1.166{1.12% | .olh3
1.45| 1.39( 1.3%| .o5%0 | 2.106 | 1.80 | .0061 | .0059 | .00022
1.35| 1.59]| 1.53| .0650 1.70 .100 .097 .0035
1.25| 1.78| 1.70 | .0758 1.60 211 .206 0075
1.15| 1.99] 1.88 | .0878 1.50 .321 .311 .0116
1.05| 2.19| 2.08 .103 L | 8| .bok| .0155
95| 2.%0] 2.27 121 1.30 196 48 .0191
85| 2.65| 2.48 .13 1.20 .56 . .0220
1.10 .60 .58 .0257
1.983 | 2.00] .0099 | .0096 | .00036
1.90| .172| .168 | .0060 | 2,133 | 1.75 | .0054 | .0052 | .00019
1.80| .3/8] .368 | .03k 1.65 .085 .08 .0030
1.701 .597{ .579 | .0215 1.55 .178 .17 .0063
1.60| .811| .78%| .o299 1.45 .268 .260 . 0097
1.50 | 1.007| .971| .038%4 1.35 .34k .333 .0128
1.40 | 1.19| 1.1% | .ols3 1.25 Jo1 .387 .0155
1.30| 1.35| 1.29 | .0552 1.15 . A3 .0178
1.20| 1.50| 1.k3 | .o6k1
1.10{ 1.65| 1.57| .0737 | 2.161 | 1.70 | .0046 | .00%5 | .0001T
1.00| 1.81} 1.72| .0861 1.60 .02 .070 . 0025
.90] 1.97| 1.86 .101 1.50 149 .15 .0053
1l.ho 214 214 .0080
. 1.30 278 .269 .oLok
2,016 | 1.95| .0088 | .0086 | .00032 1.20 .318 .307 | .ol2hk
1.85| .151| .i47 | .0053
1.75| .330| .321| .0117 | 2.187 | 1.65 | .00k0 | .0038 | .00OLL
1.65| .516| .501| .0187 1.55 .060 .059 . 0021
1.55| .695| .672 | .0257 1.h5 Jd2k .120 . oolk
1.5 .855| .82hk | .0326 1.35 179 ATh .0065
1.35| 1.00 .96 | .0388 1.25 .223 .215 .0083
1.25| 1.12| 1.08 | .oks2
1.15| 1.23] 1.17| .0532 | 2.211 | 1.60 | .003% .ogﬁh .00012
1.05| 1.35| 1.28 | .0608 1.50 .051 .oig .0018
95| 1. 1.39 | .o0707 1.ho .102 .099 .0036
1.30 b5 da .0053
2.046 | 1.90]|.0079| .007T7 | .00028
1.80| .133] .130 | .o047 | 2.234 1.25 .0029 | .0028 | .00011
1.70 | .288{ .281 | .o102 1.hs5 [ .ok | .ok | o015
1.60] Jb7| i3k | .o162 1.35 .081 .079 .0029
1.33 596 | .576 | .0221
1. .26 | .699 | .0278
1.30 .8k 81| .0327 | 2257 | 1.50 | .o002k | .0023 | .00009
1.20 .93 B89 . oﬁﬁs 1i.ho .033 .032 .0012
1.10| 1.00L .96 | .ol
1.00} 1.09) 1.0% | .0500 | 2.280 | 1.45 | .0020 | .0019 | .00007
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TABLE III.~ x/c AND y/c AS FUNCTIONS OF r ON LIMITING CHARACTERISTIC.

r (x/ec) (v/e)
2.9 -0.087x10"8 1.66Tx10™6
2.8 -.665x10"8 21.40x1078
2.7 -.552X10"6 4y 60x1078
2.6 .39x10™8 67.20x1.0™8
2.5 2.127x10™8 88.57x10"¢
2.4 L.648x107C 110.15x1078
2.3 7.911x10™e 131.6x10"8
2.2 12.53x1.0™¢ 155.8x10"¢
2.1 18.02x107° 179.9x107¢
2.0 2. 970" 206.3x107€
1.9 34.25x1.0™8 237.3X1.078
1.8 46.76x107C 273.9x1078
1.7 62.54x107¢ 315.4x1078
1.6 85.45x10™® 371.kx107®
1.5 118.18x107¢ 4h3,.9x1078
1.4 161.65x1078 533.7X1076
1.3 223.73X107¢ 653.6x1078
1.2 301.87xL0"€ 791.3X1078
1.1 k33.60x107® 1008.1x1078
1.0 616.2x1078 1298.kx107®

.9 8.330x1074 16.359x10™4

.8 12.05X10™4 21.933X10™4

T 18.52x1.074 31.01x10™4

.6 31.38x10"% 49, 02x10"%

.5 55.68x10™% 81.91x10™¢

A5 4.3 074 107.0x1.0™%

A 102.59x10™% 145,004

.35 1d.01a07% 202.6x10™4

.3 208.0x10™4 292,074

25| 32k.2x10™4 457.1x1.0~4

.2 529.4x10™4 T66.0X1.0™4

.15 | 957.7x10™4 1hhh, 71074
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(a) Complete plate.

Figure 1l.- Flow Tield.
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(v) Forward portion of plate.
Figure l.- Continued.
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(¢) Vicinity of stagnation point.

Figure l.- Continued.
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(d) Vicinity of leading edge.

Figure 1l.- Concluded.
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Present results
‘ ——————————— Guderley (Ref. 1)
\ - _— Guderley (Ref. 12)
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(a) Complete plate.

Figure 2.- Lower surface pressure distribution.
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(b) Vieinity of leading edge.

Figure 2.- Concluded.
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Figure 3.~ 1 as a function of w.
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Figure k.- g as a function of w.
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Figure 6.- Distribution of mesh intervel for calculated exsmple (a = 13°),
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Figure 7.- Contour map of ¥* in w,0 coordinates (A% = 100, y = 1.%05).
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Figure 8.

- Contour map of ¥ in w,0 coordinates (A8 = 1000, y =1.405).
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Figure 9.- Contour map of ¥ in w,0 coordinates (y = 1.405).
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